Package: chents (via r-universe)

November 3, 2024

Type Package

Title Chemical Entities as R Objects

Version 0.3.6

Date 2024-08-05

Description Utilities for dealing with chemical entities and associated data as R objects. If Python and RDKit (> 2015.03) are installed and configured for use with 'reticulate', some basic chemoinformatics functions like the calculation of molecular weight and plotting of chemical structures in R graphics are available.

Imports webchem, R6, yaml, rsvg, grImport, reticulate

Suggests knitr, testthat, covr, devEMF

License GPL

LazyLoad yes

LazyData yes

Encoding UTF-8

URL https://pkgdown.jrwb.de/chents, https://github.com/jranke/chents

Roxygen list(markdown = TRUE, r6 = TRUE)

RoxygenNote 7.3.1.9000

Repository https://jranke.r-universe.dev

RemoteUrl https://github.com/jranke/chents

RemoteRef HEAD

RemoteSha 77189d666eb39d2660245c2f008175dc4560f647

Contents

chent										•	•							•	•	•								1	2
draw_svg.c	hent	t	•																								•	9	9
pai			•																								•	9	9
plot.chent			•							•	•		•				•	•	•	•		•	•	•		•		1	1

																																						14
pri	nt.pai	•••	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	13
pri	nt.cher	nt.		•									•	•	•	•		•					•			•	•		•		•	•		•	•	•		13
ppj)																																					11

Index

```
chent
```

An R6 class for chemical entities with associated data

Description

The class is initialised with an identifier. Chemical information is retrieved from the internet. Additionally, it can be generated using RDKit if RDKit and its python bindings are installed.

Format

An R6Class generator object

Public fields

```
identifier (character(1))
    The identifier that was used to initiate the object, with attribute 'source'
inchikey (character(1))
    InChI Key, with attribute 'source'
smiles (character())
    SMILES code(s), with attribute 'source'
mw (numeric(1))
```

Molecular weight, with attribute 'source'

```
pubchem (list())
```

List of information retrieved from PubChem

rdkit List of information obtained with RDKit

mol <rdkit.Chem.rdchem.Mol> object

svg SVG code

Picture Graph as a picture object obtained using grImport

Pict_font_size Font size as extracted from the intermediate PostScript file

```
pdf_height Height of the MediaBox in the pdf after cropping
```

p0 Vapour pressure in Pa

cwsat Water solubility in mg/L

- PUF Plant uptake factor
- chyaml List of information obtained from a YAML file
- TPs List of transformation products as chent objects Add a transformation product to the internal list

- transformations Data frame of observed transformations Add a line in the internal dataframe holding observed transformations
- soil_degradation Dataframe of modelling DT50 values Add a line in the internal dataframe holding modelling DT50 values
- soil_ff Dataframe of formation fractions
- soil_sorption Dataframe of soil sorption data Add soil sorption data

Methods

Public methods:

- chent\$new()
- chent\$try_pubchem()
- chent\$get_pubchem()
- chent\$get_rdkit()
- chent\$get_chyaml()
- chent\$add_p0()
- chent\$add_cwsat()
- chent\$add_PUF()
- chent\$add_TP()
- chent\$add_transformation()
- chent\$add_soil_degradation()
- chent\$add_soil_ff()
- chent\$add_soil_sorption()
- chent\$pdf()
- chent\$png()
- chent\$emf()
- chent\$clone()

Method new(): Creates a new instance of this R6 class.

```
Usage:
chent$new(
  identifier,
  smiles = NULL,
  inchikey = NULL,
  pubchem = TRUE,
  pubchem_from = c("name", "smiles", "inchikey"),
  rdkit = TRUE,
  template = NULL,
  chyaml = TRUE
)
```

Arguments:

identifier Identifier to be stored in the object smiles Optional user provided SMILES code inchikey Optional user provided InChI Key

- pubchem Should an attempt be made to retrieve chemical information from PubChem via the webchem package?
- pubchem_from Possibility to select the argument that is used to query pubchem
- rdkit Should an attempt be made to retrieve chemical information from a local rdkit installation via python and the reticulate package?
- template An optional SMILES code to be used as template for RDKit
- chyaml Should we look for a identifier.yaml file in the working directory? Try to get chemical information from PubChem

Method try_pubchem():

Usage:

chent\$try_pubchem(query, from = "name")

Arguments:

query Query string to be passed to get_cid

from Passed to get_cid Get chemical information from PubChem for a known PubChem CID

Method get_pubchem():

Usage:

chent\$get_pubchem(pubchem_cid)

Arguments:

pubchem_cid CID Get chemical information from RDKit if available

Method get_rdkit():

Usage:

chent\$get_rdkit(template = NULL)

Arguments:

template Optional template specified as a SMILES code Obtain information from a YAML file

Method get_chyaml():

```
Usage:
chent$get_chyaml(
  repo = c("wd", "local", "web"),
  chyaml = paste0(URLencode(self$identifier), ".yaml")
)
```

Arguments:

repo Should the file be looked for in the current working directory, a local git repository under ~/git/chyaml, or from the web (not implemented).

chyaml The filename to be looked for Add a vapour pressure

Method add_p0():

Usage:

chent\$add_p0(p0, T = NA, source = NA, page = NA, remark = "")

chent

Arguments:
p0 The vapour pressure in Pa
T Temperature
source An acronym specifying the source of the information
page The page from which the information was taken
remark A remark Add a water solubility

Method add_cwsat():

Usage:

chent\$add_cwsat(cwsat, T = NA, pH = NA, source = NA, page = NA, remark = "")

Arguments:

cwsat The water solubility in mg/L

T Temperature

pH The pH value

source An acronym specifying the source of the information

page The page from which the information was taken

remark A remark Add a plant uptake factor

Method add_PUF():

```
Usage:
chent$add_PUF(
  PUF = 0,
  source = "focus_generic_gw_2014",
  page = 41,
  remark = "Conservative default value"
)
```

Arguments:

PUF The plant uptake factor, a number between 0 and 1 source An acronym specifying the source of the information page The page from which the information was taken remark A remark

Method add_TP():

Usage:

chent\$add_TP(x, smiles = NULL, pubchem = FALSE)

Arguments:

x A chent object, or an identifier to generate a chent object smiles A SMILES code for defining a chent object pubchem Should chemical information be obtained from PubChem?

Method add_transformation():

Usage:

```
chent
```

```
chent$add_transformation(
   study_type,
   TP_identifier,
   max_occurrence,
   remark = "",
   source = NA,
   pages = NA
)
```

Arguments:

study_type A characterisation of the study type

TP_identifier An identifier of one of the transformation products in self\$TPs

max_occurrence The maximum observed occurrence of the transformation product, expressed as a fraction of the amount that would result from stochiometric transformation

remark A remark

source An acronym specifying the source of the information

pages The page from which the information was taken

Method add_soil_degradation():

```
Usage:
chent$add_soil_degradation(
  soils,
  DT50_mod,
  DT50_mod_ref,
  type = NA,
  country = NA,
  pH_orig = NA,
  pH_medium = NA,
  pH_H20 = NA,
  perc_OC = NA,
  temperature = NA,
  moisture = NA,
  category = "lab",
  formulation = NA,
  model = NA,
  chi2 = NA,
  remark = ""
  source,
  page = NA
)
Arguments:
```

soils Names of the soils

DT50_mod The modelling DT50 in the sense of regulatory pesticide fate modelling

DT50_mod_ref The normalised modelling DT50 in the sense of regulatory pesticide fate modelling

type The soil type

country The country (mainly for field studies)

6

chent

pH_orig The pH stated in the study pH_medium The medium in which this pH was measured pH_H20 The pH extrapolated to pure water perc_OC The percentage of organic carbon in the soil temperature The temperature during the study in degrees Celsius moisture The moisture during the study category Is it a laboratory ('lab') or field study ('field') formulation Name of the formulation applied, if it was not the technical active ingredient model The degradation model used for deriving DT50_mod chi2 The relative error as defined in FOCUS kinetics remark A remark source An acronym specifying the source of the information page The page from which the information was taken

Method add_soil_ff():

Usage:

chent\$add_soil_ff(target, soils, ff = 1, remark = "", source, page = NA)
Arguments:
target The identifier(s) of the transformation product
soils The soil name(s) in which the transformation was observed
ff The formation fraction(s)

Method add_soil_sorption():

```
Usage:
chent$add_soil_sorption(
  soils,
 Kf,
 Kfoc,
 Ν,
  type = NA,
  pH_orig = NA,
 pH_medium = NA,
 pH_H20 = NA,
 perc_OC = NA,
 perc_clay = NA,
 CEC = NA,
 remark = ""
 source,
  page = NA
```

)

Arguments:

Kf The sorption constant in L/kg, either linear (then N is 1) or according to Freundlich Kfoc The constant from above, normalised to soil organic carbon

N The Freundlich exponent

perc_clay The percentage of clay in the soil CEC The cation exchange capacity Write a PDF image of the structure

Method pdf():

```
Usage:
chent$pdf(
  file = paste0(self$identifier, ".pdf"),
  dir = "structures/pdf",
  template = NULL
)
```

Arguments:

file The file to write to

dir The directory to write the file to

template A template expressed as SMILES to use in RDKit Write a PNG image of the structure

Method png():

```
Usage:
chent$png(
  file = paste0(self$identifier, ".png"),
  dir = "structures/png",
  antialias = "gray"
)
```

Arguments:

antialias Passed to png Write an EMF image of the structure using emf

Method emf():

```
Usage:
chent$emf(file = paste0(self$identifier, ".emf"), dir = "structures/emf")
Arguments:
file The file to write to
```

Method clone(): The objects of this class are cloneable with this method.

Usage: chent\$clone(deep = FALSE) Arguments: deep Whether to make a deep clone.

Examples

```
oct <- chent$new("1-octanol", smiles = "CCCCCCCCO", pubchem = FALSE)
print(oct)
if (!is.null(oct$Picture)) {
    plot(oct)
}</pre>
```

draw_svg.chent

```
caffeine <- chent$new("caffeine")
print(caffeine)
if (!is.null(caffeine$Picture)) {
   plot(caffeine)
}</pre>
```

draw_svg.chent Draw SVG graph from a chent object using RDKit

Description

Draw SVG graph from a chent object using RDKit

Usage

```
draw_svg.chent(
    x,
    width = 300,
    height = 150,
    filename = paste0(names(x$identifier), ".svg"),
    subdir = "svg"
)
```

Arguments

х	The chent object to be plotted
width	The desired width in pixels
height	The desired height in pixels
filename	The filename
subdir	The path to which the file should be written

pai

An R6 class for pesticidal active ingredients and associated data

Description

The class is initialised with an identifier which is generally an ISO common name. Additional chemical information is retrieved from the internet if available.

Format

An R6Class generator object

Super class

chents::chent -> pai

Public fields

- iso ISO common name of the active ingredient according to ISO 1750
- bcpc Information retrieved from the BCPC compendium available online at cpesticidecompendium.bcpc.org> Creates a new instance of this R6 class.

Methods

Public methods:

- pai\$new()
- pai\$clone()

Method new(): This class is derived from chent. It makes it easy to create a chent from the ISO common name of a pesticide active ingredient, and additionally stores the ISO name as well as the complete result of querying the BCPC compendium using bcpc_query.

```
Usage:
pai$new(
    iso,
    identifier = iso,
    smiles = NULL,
    inchikey = NULL,
    bcpc = TRUE,
    pubchem = TRUE,
    pubchem_from = "auto",
    rdkit = TRUE,
    template = NULL,
    chyaml = TRUE
)
```

Arguments:

iso The ISO common name to be used in the query of the BCPC compendium identifier Alternative identifier used for querying pubchem

Method clone(): The objects of this class are cloneable with this method.

```
Usage:
pai$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
```

Examples

- # On Travis, we get a certificate validation error,
- # likely because the system (xenial) is so old,
- # therefore don't run this example on Travis

plot.chent

```
if (Sys.getenv("TRAVIS") == "") {
  atr <- pai$new("atrazine")
  print(atr)
  if (!is.null(atr$Picture)) {
    plot(atr)
  }
}</pre>
```

plot.chent

Plot method for chent objects

Description

Plot method for chent objects

Usage

S3 method for class 'chent'
plot(x, ...)

Arguments

х	The chent object to be plotted
	Further arguments passed to grid.picture

Examples

```
caffeine <- chent$new("caffeine")
print(caffeine)
if (!is.null(caffeine$Picture)) {
    plot(caffeine)
}</pre>
```

R6 class for a plant protection	product	with	at least	one	active	ingre-
dient						

Description

ppp

Contains basic information about the active ingredients in the product

Format

An R6Class generator object.

12

Public fields

name The name of the product ais A list of active ingredients concentrations The concentration of the ais concentration_units Defaults to g/L density The density of the product density_units Defaults to g/L Creates a new instance of this R6 class. ... Identifiers of the active ingredients concentrations Concentrations of the active ingredients concentration_units Defaults to g/L density The density density_units Defaults to g/L Printing method

Active bindings

... Identifiers of the active ingredients

Methods

Public methods:

```
• ppp$new()
```

- ppp\$print()
- ppp\$clone()

```
Method new():
```

```
Usage:
ppp$new(
    name,
    ...,
    concentrations,
    concentration_units = "g/L",
    density = 1000,
    density_units = "g/L"
)
```

Method print():

Usage:
ppp\$print()

Method clone(): The objects of this class are cloneable with this method.

Usage: ppp\$clone(deep = FALSE) Arguments: deep Whether to make a deep clone. print.chent

Description

Printing method for chent objects

Usage

S3 method for class 'chent'
print(x, ...)

Arguments

Х	The chent object to be printed
	Further arguments for compatibility with the S3 method

print.pai

Printing method for pai objects (pesticidal active ingredients)

Description

Printing method for pai objects (pesticidal active ingredients)

Usage

S3 method for class 'pai'
print(x, ...)

Arguments

Х	The chent object to be printed
	Further arguments for compatibility with the S3 method

Index

bcpc_query, 10 chent, 2, 5, 10 chents::chent, 10 draw_svg.chent, 9 emf, 8 get_cid, 4 grid.picture, 11 pai, 9 picture, 2 plot.chent, 11 png, 8 ppp, 11 print.chent, 13 print.pai, 13 R6, 3, 10, 12

R6Class, 2, 9, 11