
Package: mkin (via r-universe)
October 6, 2024

Type Package

Title Kinetic Evaluation of Chemical Degradation Data

Version 1.2.9

Date 2024-09-06

Description Calculation routines based on the FOCUS Kinetics Report
(2006, 2014). Includes a function for conveniently defining
differential equation models, model solution based on
eigenvalues if possible or using numerical solvers. If a C
compiler (on windows: 'Rtools') is installed, differential
equation models are solved using automatically generated C
functions. Heteroscedasticity can be taken into account using
variance by variable or two-component error models as described
by Ranke and Meinecke (2018) <doi:10.3390/environments6120124>.
Hierarchical degradation models can be fitted using nonlinear
mixed-effects model packages as a back end as described by
Ranke et al. (2021) <doi:10.3390/environments8080071>. Please
note that no warranty is implied for correctness of results or
fitness for a particular purpose.

Depends R (>= 2.15.1),

Imports stats, graphics, methods, parallel, deSolve (>= 1.35), R6,
inline (>= 0.3.19), numDeriv, lmtest, pkgbuild, nlme (>=
3.1-151), saemix (>= 3.2), rlang, vctrs

Suggests knitr, rbenchmark, tikzDevice, testthat, rmarkdown, covr,
vdiffr, benchmarkme, tibble, stats4, readxl

License GPL

LazyLoad yes

LazyData yes

Encoding UTF-8

Language en-GB

VignetteBuilder knitr

BugReports https://github.com/jranke/mkin/issues/

1

https://doi.org/10.3390/environments6120124
https://doi.org/10.3390/environments8080071
https://github.com/jranke/mkin/issues/

2 Contents

URL https://pkgdown.jrwb.de/mkin/

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.2

Repository https://jranke.r-universe.dev

RemoteUrl https://github.com/jranke/mkin

RemoteRef HEAD

RemoteSha 7b14afbeaa779009014ee866fe5e56edd3e8681d

Contents
add_err . 4
AIC.mmkin . 6
anova.saem.mmkin . 7
aw . 8
CAKE_export . 9
check_failed . 10
confint.mkinfit . 10
create_deg_func . 13
D24_2014 . 14
DFOP.solution . 15
dimethenamid_2018 . 16
ds_mixed . 18
endpoints . 18
experimental_data_for_UBA_2019 . 20
FOCUS_2006_datasets . 22
FOCUS_2006_DFOP_ref_A_to_B . 23
FOCUS_2006_FOMC_ref_A_to_F . 24
FOCUS_2006_HS_ref_A_to_F . 25
FOCUS_2006_SFO_ref_A_to_F . 26
focus_soil_moisture . 27
FOMC.solution . 27
f_time_norm_focus . 28
get_deg_func . 30
hierarchical_kinetics . 30
HS.solution . 31
illparms . 32
ilr . 34
intervals.saem.mmkin . 35
IORE.solution . 36
llhist . 37
loftest . 38
logistic.solution . 39
logLik.mkinfit . 41
logLik.saem.mmkin . 42
lrtest.mkinfit . 43
max_twa_parent . 44

https://pkgdown.jrwb.de/mkin/

Contents 3

mccall81_245T . 45
mean_degparms . 46
mhmkin . 47
mixed . 49
mkinds . 51
mkindsg . 52
mkinerrmin . 54
mkinerrplot . 55
mkinfit . 56
mkinmod . 62
mkinparplot . 65
mkinplot . 66
mkinpredict . 67
mkinresplot . 70
mkin_long_to_wide . 71
mkin_wide_to_long . 72
mmkin . 73
multistart . 75
nafta . 77
NAFTA_SOP_2015 . 78
NAFTA_SOP_Attachment . 79
nlme.mmkin . 79
nlme_function . 83
nobs.mkinfit . 84
parms . 85
parplot . 86
plot.mixed.mmkin . 87
plot.mkinfit . 90
plot.mmkin . 93
plot.nafta . 95
read_spreadsheet . 96
residuals.mkinfit . 97
saem . 97
schaefer07_complex_case . 101
set_nd_nq . 102
SFO.solution . 104
SFORB.solution . 105
sigma_twocomp . 106
status . 108
summary.mkinfit . 109
summary.mmkin . 110
summary.nlme.mmkin . 111
summary.saem.mmkin . 113
summary_listing . 115
synthetic_data_for_UBA_2014 . 116
test_data_from_UBA_2014 . 119
transform_odeparms . 120
update.mkinfit . 123

4 add_err

[.mmkin . 123

Index 125

add_err Add normally distributed errors to simulated kinetic degradation data

Description

Normally distributed errors are added to data predicted for a specific degradation model using
mkinpredict. The variance of the error may depend on the predicted value and is specified as
a standard deviation.

Usage

add_err(
prediction,
sdfunc,
secondary = c("M1", "M2"),
n = 10,
LOD = 0.1,
reps = 2,
digits = 1,
seed = NA

)

Arguments

prediction A prediction from a kinetic model as produced by mkinpredict.

sdfunc A function taking the predicted value as its only argument and returning a stan-
dard deviation that should be used for generating the random error terms for this
value.

secondary The names of state variables that should have an initial value of zero

n The number of datasets to be generated.

LOD The limit of detection (LOD). Values that are below the LOD after adding the
random error will be set to NA.

reps The number of replicates to be generated within the datasets.

digits The number of digits to which the values will be rounded.

seed The seed used for the generation of random numbers. If NA, the seed is not set.

Value

A list of datasets compatible with mmkin, i.e. the components of the list are datasets compatible
with mkinfit.

add_err 5

Author(s)

Johannes Ranke

References

Ranke J and Lehmann R (2015) To t-test or not to t-test, that is the question. XV Symposium on
Pesticide Chemistry 2-4 September 2015, Piacenza, Italy https://jrwb.de/posters/piacenza_2015.pdf

Examples

The kinetic model
m_SFO_SFO <- mkinmod(parent = mkinsub("SFO", "M1"),

M1 = mkinsub("SFO"), use_of_ff = "max")

Generate a prediction for a specific set of parameters
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)

This is the prediction used for the "Type 2 datasets" on the Piacenza poster
from 2015
d_SFO_SFO <- mkinpredict(m_SFO_SFO,

c(k_parent = 0.1, f_parent_to_M1 = 0.5,
k_M1 = log(2)/1000),

c(parent = 100, M1 = 0),
sampling_times)

Add an error term with a constant (independent of the value) standard deviation
of 10, and generate three datasets
d_SFO_SFO_err <- add_err(d_SFO_SFO, function(x) 10, n = 3, seed = 123456789)

Name the datasets for nicer plotting
names(d_SFO_SFO_err) <- paste("Dataset", 1:3)

Name the model in the list of models (with only one member in this case) for
nicer plotting later on. Be quiet and use only one core not to offend CRAN
checks
Not run:
f_SFO_SFO <- mmkin(list("SFO-SFO" = m_SFO_SFO),

d_SFO_SFO_err, cores = 1,
quiet = TRUE)

plot(f_SFO_SFO)

We would like to inspect the fit for dataset 3 more closely
Using double brackets makes the returned object an mkinfit object
instead of a list of mkinfit objects, so plot.mkinfit is used
plot(f_SFO_SFO[[3]], show_residuals = TRUE)

If we use single brackets, we should give two indices (model and dataset),
and plot.mmkin is used
plot(f_SFO_SFO[1, 3])

End(Not run)

6 AIC.mmkin

AIC.mmkin Calculate the AIC for a column of an mmkin object

Description

Provides a convenient way to compare different kinetic models fitted to the same dataset.

Usage

S3 method for class 'mmkin'
AIC(object, ..., k = 2)

S3 method for class 'mmkin'
BIC(object, ...)

Arguments

object An object of class mmkin, containing only one column.

... For compatibility with the generic method

k As in the generic method

Value

As in the generic method (a numeric value for single fits, or a dataframe if there are several fits in
the column).

Author(s)

Johannes Ranke

Examples

Not run: # skip, as it takes > 10 s on winbuilder
f <- mmkin(c("SFO", "FOMC", "DFOP"),

list("FOCUS A" = FOCUS_2006_A,
"FOCUS C" = FOCUS_2006_C), cores = 1, quiet = TRUE)

We get a warning because the FOMC model does not converge for the
FOCUS A dataset, as it is well described by SFO

AIC(f["SFO", "FOCUS A"]) # We get a single number for a single fit
AIC(f[["SFO", "FOCUS A"]]) # or when extracting an mkinfit object

For FOCUS A, the models fit almost equally well, so the higher the number
of parameters, the higher (worse) the AIC
AIC(f[, "FOCUS A"])
AIC(f[, "FOCUS A"], k = 0) # If we do not penalize additional parameters, we get nearly the same

anova.saem.mmkin 7

BIC(f[, "FOCUS A"]) # Comparing the BIC gives a very similar picture

For FOCUS C, the more complex models fit better
AIC(f[, "FOCUS C"])
BIC(f[, "FOCUS C"])

End(Not run)

anova.saem.mmkin Anova method for saem.mmkin objects

Description

Generate an anova object. The method to calculate the BIC is that from the saemix package. As
in other prominent anova methods, models are sorted by number of parameters, and the tests (if
requested) are always relative to the model on the previous line.

Usage

S3 method for class 'saem.mmkin'
anova(
object,
...,
method = c("is", "lin", "gq"),
test = FALSE,
model.names = NULL

)

Arguments

object An saem.mmkin object

... further such objects

method Method for likelihood calculation: "is" (importance sampling), "lin" (linear ap-
proximation), or "gq" (Gaussian quadrature). Passed to saemix::logLik.SaemixObject

test Should a likelihood ratio test be performed? If TRUE, the alternative models are
tested against the first model. Should only be done for nested models.

model.names Optional character vector of model names

Value

an "anova" data frame; the traditional (S3) result of anova()

8 aw

aw Calculate Akaike weights for model averaging

Description

Akaike weights are calculated based on the relative expected Kullback-Leibler information as spec-
ified by Burnham and Anderson (2004).

Usage

aw(object, ...)

S3 method for class 'mkinfit'
aw(object, ...)

S3 method for class 'mmkin'
aw(object, ...)

S3 method for class 'mixed.mmkin'
aw(object, ...)

S3 method for class 'multistart'
aw(object, ...)

Arguments

object An mmkin column object, containing two or more mkinfit models that have been
fitted to the same data, or an mkinfit object. In the latter case, further mkinfit
objects fitted to the same data should be specified as dots arguments.

... Not used in the method for mmkin column objects, further mkinfit objects in the
method for mkinfit objects.

References

Burnham KP and Anderson DR (2004) Multimodel Inference: Understanding AIC and BIC in
Model Selection. Sociological Methods & Research 33(2) 261-304

Examples

Not run:
f_sfo <- mkinfit("SFO", FOCUS_2006_D, quiet = TRUE)
f_dfop <- mkinfit("DFOP", FOCUS_2006_D, quiet = TRUE)
aw_sfo_dfop <- aw(f_sfo, f_dfop)
sum(aw_sfo_dfop)
aw_sfo_dfop # SFO gets more weight as it has less parameters and a similar fit
f <- mmkin(c("SFO", "FOMC", "DFOP"), list("FOCUS D" = FOCUS_2006_D), cores = 1, quiet = TRUE)
aw(f)
sum(aw(f))

CAKE_export 9

aw(f[c("SFO", "DFOP")])

End(Not run)

CAKE_export Export a list of datasets format to a CAKE study file

Description

In addition to the datasets, the pathways in the degradation model can be specified as well.

Usage

CAKE_export(
ds,
map = c(parent = "Parent"),
links = NA,
filename = "CAKE_export.csf",
path = ".",
overwrite = FALSE,
study = "Degradinol aerobic soil degradation",
description = "",
time_unit = "days",
res_unit = "% AR",
comment = "",
date = Sys.Date(),
optimiser = "IRLS"

)

Arguments

ds A named list of datasets in long format as compatible with mkinfit.

map A character vector with CAKE compartment names (Parent, A1, ...), named with
the names used in the list of datasets.

links An optional character vector of target compartments, named with the names of
the source compartments. In order to make this easier, the names are used as in
the datasets supplied.

filename Where to write the result. Should end in .csf in order to be compatible with
CAKE.

path An optional path to the output file.

overwrite If TRUE, existing files are overwritten.

study The name of the study.

description An optional description.

time_unit The time unit for the residue data.

res_unit The unit used for the residues.

10 confint.mkinfit

comment An optional comment.

date The date of file creation.

optimiser Can be OLS or IRLS.

Value

The function is called for its side effect.

Author(s)

Johannes Ranke

check_failed Check if fit within an mhmkin object failed

Description

Check if fit within an mhmkin object failed

Usage

check_failed(x)

Arguments

x The object to be checked

confint.mkinfit Confidence intervals for parameters of mkinfit objects

Description

The default method ’quadratic’ is based on the quadratic approximation of the curvature of the like-
lihood function at the maximum likelihood parameter estimates. The alternative method ’profile’ is
based on the profile likelihood for each parameter. The ’profile’ method uses two nested optimisa-
tions and can take a very long time, even if parallelized by specifying ’cores’ on unixoid platforms.
The speed of the method could likely be improved by using the method of Venzon and Moolgavkar
(1988).

confint.mkinfit 11

Usage

S3 method for class 'mkinfit'
confint(
object,
parm,
level = 0.95,
alpha = 1 - level,
cutoff,
method = c("quadratic", "profile"),
transformed = TRUE,
backtransform = TRUE,
cores = parallel::detectCores(),
rel_tol = 0.01,
quiet = FALSE,
...

)

Arguments

object An mkinfit object
parm A vector of names of the parameters which are to be given confidence intervals.

If missing, all parameters are considered.
level The confidence level required
alpha The allowed error probability, overrides ’level’ if specified.
cutoff Possibility to specify an alternative cutoff for the difference in the log-likelihoods

at the confidence boundary. Specifying an explicit cutoff value overrides argu-
ments ’level’ and ’alpha’

method The ’quadratic’ method approximates the likelihood function at the optimised
parameters using the second term of the Taylor expansion, using a second deriva-
tive (hessian) contained in the object. The ’profile’ method searches the parame-
ter space for the cutoff of the confidence intervals by means of a likelihood ratio
test.

transformed If the quadratic approximation is used, should it be applied to the likelihood
based on the transformed parameters?

backtransform If we approximate the likelihood in terms of the transformed parameters, should
we backtransform the parameters with their confidence intervals?

cores The number of cores to be used for multicore processing. On Windows ma-
chines, cores > 1 is currently not supported.

rel_tol If the method is ’profile’, what should be the accuracy of the lower and upper
bounds, relative to the estimate obtained from the quadratic method?

quiet Should we suppress the message "Profiling the likelihood"
... Not used

Value

A matrix with columns giving lower and upper confidence limits for each parameter.

12 confint.mkinfit

References

Bates DM and Watts GW (1988) Nonlinear regression analysis & its applications

Pawitan Y (2013) In all likelihood - Statistical modelling and inference using likelihood. Clarendon
Press, Oxford.

Venzon DJ and Moolgavkar SH (1988) A Method for Computing Profile-Likelihood Based Confi-
dence Intervals, Applied Statistics, 37, 87–94.

Examples

f <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
confint(f, method = "quadratic")

Not run:
confint(f, method = "profile")

Set the number of cores for the profiling method for further examples
if (identical(Sys.getenv("NOT_CRAN"), "true")) {

n_cores <- parallel::detectCores() - 1
} else {

n_cores <- 1
}
if (Sys.getenv("TRAVIS") != "") n_cores = 1
if (Sys.info()["sysname"] == "Windows") n_cores = 1

SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"),
use_of_ff = "min", quiet = TRUE)

SFO_SFO.ff <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)

f_d_1 <- mkinfit(SFO_SFO, subset(FOCUS_2006_D, value != 0), quiet = TRUE)
system.time(ci_profile <- confint(f_d_1, method = "profile", cores = 1, quiet = TRUE))
Using more cores does not save much time here, as parent_0 takes up most of the time
If we additionally exclude parent_0 (the confidence of which is often of
minor interest), we get a nice performance improvement if we use at least 4 cores
system.time(ci_profile_no_parent_0 <- confint(f_d_1, method = "profile",

c("k_parent_sink", "k_parent_m1", "k_m1_sink", "sigma"), cores = n_cores))
ci_profile
ci_quadratic_transformed <- confint(f_d_1, method = "quadratic")
ci_quadratic_transformed
ci_quadratic_untransformed <- confint(f_d_1, method = "quadratic", transformed = FALSE)
ci_quadratic_untransformed
Against the expectation based on Bates and Watts (1988), the confidence
intervals based on the internal parameter transformation are less
congruent with the likelihood based intervals. Note the superiority of the
interval based on the untransformed fit for k_m1_sink
rel_diffs_transformed <- abs((ci_quadratic_transformed - ci_profile)/ci_profile)
rel_diffs_untransformed <- abs((ci_quadratic_untransformed - ci_profile)/ci_profile)
rel_diffs_transformed < rel_diffs_untransformed
signif(rel_diffs_transformed, 3)
signif(rel_diffs_untransformed, 3)

create_deg_func 13

Investigate a case with formation fractions
f_d_2 <- mkinfit(SFO_SFO.ff, subset(FOCUS_2006_D, value != 0), quiet = TRUE)
ci_profile_ff <- confint(f_d_2, method = "profile", cores = n_cores)
ci_profile_ff
ci_quadratic_transformed_ff <- confint(f_d_2, method = "quadratic")
ci_quadratic_transformed_ff
ci_quadratic_untransformed_ff <- confint(f_d_2, method = "quadratic", transformed = FALSE)
ci_quadratic_untransformed_ff
rel_diffs_transformed_ff <- abs((ci_quadratic_transformed_ff - ci_profile_ff)/ci_profile_ff)
rel_diffs_untransformed_ff <- abs((ci_quadratic_untransformed_ff - ci_profile_ff)/ci_profile_ff)
While the confidence interval for the parent rate constant is closer to
the profile based interval when using the internal parameter
transformation, the interval for the metabolite rate constant is 'better
without internal parameter transformation.
rel_diffs_transformed_ff < rel_diffs_untransformed_ff
rel_diffs_transformed_ff
rel_diffs_untransformed_ff

The profiling for the following fit does not finish in a reasonable time,
therefore we use the quadratic approximation
m_synth_DFOP_par <- mkinmod(parent = mkinsub("DFOP", c("M1", "M2")),

M1 = mkinsub("SFO"),
M2 = mkinsub("SFO"),
use_of_ff = "max", quiet = TRUE)

DFOP_par_c <- synthetic_data_for_UBA_2014[[12]]$data
f_tc_2 <- mkinfit(m_synth_DFOP_par, DFOP_par_c, error_model = "tc",

error_model_algorithm = "direct", quiet = TRUE)
confint(f_tc_2, method = "quadratic")
confint(f_tc_2, "parent_0", method = "quadratic")

End(Not run)

create_deg_func Create degradation functions for known analytical solutions

Description

Create degradation functions for known analytical solutions

Usage

create_deg_func(spec, use_of_ff = c("min", "max"))

Arguments

spec List of model specifications as contained in mkinmod objects

use_of_ff Minimum or maximum use of formation fractions

14 D24_2014

Value

Degradation function to be attached to mkinmod objects

Examples

SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))

FOCUS_D <- subset(FOCUS_2006_D, value != 0) # to avoid warnings
fit_1 <- mkinfit(SFO_SFO, FOCUS_D, solution_type = "analytical", quiet = TRUE)
Not run:
fit_2 <- mkinfit(SFO_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE)
if (require(rbenchmark))

benchmark(
analytical = mkinfit(SFO_SFO, FOCUS_D, solution_type = "analytical", quiet = TRUE),
deSolve = mkinfit(SFO_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE),
replications = 2)

DFOP_SFO <- mkinmod(
parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"))

benchmark(
analytical = mkinfit(DFOP_SFO, FOCUS_D, solution_type = "analytical", quiet = TRUE),
deSolve = mkinfit(DFOP_SFO, FOCUS_D, solution_type = "deSolve", quiet = TRUE),
replications = 2)

End(Not run)

D24_2014 Aerobic soil degradation data on 2,4-D from the EU assessment in
2014

Description

The five datasets were extracted from the active substance evaluation dossier published by EFSA.
Kinetic evaluations shown for these datasets are intended to illustrate and advance kinetic mod-
elling. The fact that these data and some results are shown here does not imply a license to use them
in the context of pesticide registrations, as the use of the data may be constrained by data protection
regulations.

Usage

D24_2014

Format

An mkindsg object grouping five datasets

DFOP.solution 15

Details

Data for the first dataset are from p. 685. Data for the other four datasets were used in the prepro-
cessed versions given in the kinetics section (p. 761ff.), with the exception of residues smaller than
1 for DCP in the soil from Site I2, where the values given on p. 694 were used.

The R code used to create this data object is installed with this package in the ’dataset_generation’
directory. In the code, page numbers are given for specific pieces of information in the comments.

Source

Hellenic Ministry of Rural Development and Agriculture (2014) Final addendum to the Renewal
Assessment Report - public version - 2,4-D Volume 3 Annex B.8 Fate and behaviour in the envi-
ronment https://open.efsa.europa.eu/study-inventory/EFSA-Q-2013-00811

Examples

print(D24_2014)
Not run:
print(D24_2014$ds[[1]], data = TRUE)
m_D24 = mkinmod(D24 = mkinsub("SFO", to = "DCP"),

DCP = mkinsub("SFO", to = "DCA"),
DCA = mkinsub("SFO"))

print(m_D24)
m_D24_2 = mkinmod(D24 = mkinsub("DFOP", to = "DCP"),

DCP = mkinsub("SFO", to = "DCA"),
DCA = mkinsub("SFO"))

print(m_D24_2)

End(Not run)

DFOP.solution Double First-Order in Parallel kinetics

Description

Function describing decline from a defined starting value using the sum of two exponential decline
functions.

Usage

DFOP.solution(t, parent_0, k1, k2, g)

Arguments

t Time.
parent_0 Starting value for the response variable at time zero.
k1 First kinetic constant.
k2 Second kinetic constant.
g Fraction of the starting value declining according to the first kinetic constant.

16 dimethenamid_2018

Value

The value of the response variable at time t.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: FOMC.solution(), HS.solution(), IORE.solution(), SFO.solution(),
SFORB.solution(), logistic.solution()

Examples

plot(function(x) DFOP.solution(x, 100, 5, 0.5, 0.3), 0, 4, ylim = c(0,100))

dimethenamid_2018 Aerobic soil degradation data on dimethenamid and dimethenamid-P
from the EU assessment in 2018

Description

The datasets were extracted from the active substance evaluation dossier published by EFSA. Ki-
netic evaluations shown for these datasets are intended to illustrate and advance kinetic modelling.
The fact that these data and some results are shown here does not imply a license to use them in
the context of pesticide registrations, as the use of the data may be constrained by data protection
regulations.

Usage

dimethenamid_2018

Format

An mkindsg object grouping seven datasets with some meta information

Details

The R code used to create this data object is installed with this package in the ’dataset_generation’
directory. In the code, page numbers are given for specific pieces of information in the comments.

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

dimethenamid_2018 17

Source

Rapporteur Member State Germany, Co-Rapporteur Member State Bulgaria (2018) Renewal As-
sessment Report Dimethenamid-P Volume 3 - B.8 Environmental fate and behaviour Rev. 2 -
November 2017 https://open.efsa.europa.eu/study-inventory/EFSA-Q-2014-00716

Examples

print(dimethenamid_2018)
dmta_ds <- lapply(1:7, function(i) {

ds_i <- dimethenamid_2018$ds[[i]]$data
ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
ds_i

})
names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
dmta_ds[["Elliot 1"]] <- NULL
dmta_ds[["Elliot 2"]] <- NULL
Not run:
We don't use DFOP for the parent compound, as this gives numerical
instabilities in the fits
sfo_sfo3p <- mkinmod(
DMTA = mkinsub("SFO", c("M23", "M27", "M31")),
M23 = mkinsub("SFO"),
M27 = mkinsub("SFO"),
M31 = mkinsub("SFO", "M27", sink = FALSE),
quiet = TRUE

)
dmta_sfo_sfo3p_tc <- mmkin(list("SFO-SFO3+" = sfo_sfo3p),

dmta_ds, error_model = "tc", quiet = TRUE)
print(dmta_sfo_sfo3p_tc)
The default (test_log_parms = FALSE) gives an undue
influence of ill-defined rate constants that have
extremely small values:
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = FALSE)
If we disregards ill-defined rate constants, the results
look more plausible, but the truth is likely to be in
between these variants
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE)
We can also specify a default value for the failing
log parameters, to mimic FOCUS guidance
plot(mixed(dmta_sfo_sfo3p_tc), test_log_parms = TRUE,

default_log_parms = log(2)/1000)
As these attempts are not satisfying, we use nonlinear mixed-effects models
f_dmta_nlme_tc <- nlme(dmta_sfo_sfo3p_tc)
nlme reaches maxIter = 50 without convergence
f_dmta_saem_tc <- saem(dmta_sfo_sfo3p_tc)
I am commenting out the convergence plot as rendering them
with pkgdown fails (at least without further tweaks to the
graphics device used)
#saemix::plot(f_dmta_saem_tc$so, plot.type = "convergence")
summary(f_dmta_saem_tc)

18 endpoints

As the confidence interval for the random effects of DMTA_0
includes zero, we could try an alternative model without
such random effects
f_dmta_saem_tc_2 <- saem(dmta_sfo_sfo3p_tc,
covariance.model = diag(c(0, rep(1, 7))))
saemix::plot(f_dmta_saem_tc_2$so, plot.type = "convergence")
This does not perform better judged by AIC and BIC
saemix::compare.saemix(f_dmta_saem_tc$so, f_dmta_saem_tc_2$so)

End(Not run)

ds_mixed Synthetic data for hierarchical kinetic degradation models

Description

The R code used to create this data object is installed with this package in the ’dataset_generation’
directory.

Examples

Not run:
sfo_mmkin <- mmkin("SFO", ds_sfo, quiet = TRUE, error_model = "tc", cores = 15)
sfo_saem <- saem(sfo_mmkin, no_random_effect = "parent_0")
plot(sfo_saem)

End(Not run)

This is the code used to generate the datasets
cat(readLines(system.file("dataset_generation/ds_mixed.R", package = "mkin")), sep = "\n")

endpoints Function to calculate endpoints for further use from kinetic models
fitted with mkinfit

Description

This function calculates DT50 and DT90 values as well as formation fractions from kinetic models
fitted with mkinfit. If the SFORB model was specified for one of the parents or metabolites, the
Eigenvalues are returned. These are equivalent to the rate constants of the DFOP model, but with
the advantage that the SFORB model can also be used for metabolites.

Usage

endpoints(fit, covariates = NULL, covariate_quantile = 0.5)

endpoints 19

Arguments

fit An object of class mkinfit, nlme.mmkin or saem.mmkin, or another object that
has list components mkinmod containing an mkinmod degradation model, and
two numeric vectors, bparms.optim and bparms.fixed, that contain parameter
values for that model.

covariates Numeric vector with covariate values for all variables in any covariate models
in the object. If given, it overrides ’covariate_quantile’.

covariate_quantile

This argument only has an effect if the fitted object has covariate models. If
so, the default is to show endpoints for the median of the covariate values (50th
percentile).

Details

Additional DT50 values are calculated from the FOMC DT90 and k1 and k2 from HS and DFOP,
as well as from Eigenvalues b1 and b2 of any SFORB models

Value

A list with a matrix of dissipation times named distimes, and, if applicable, a vector of formation
fractions named ff and, if the SFORB model was in use, a vector of eigenvalues of these SFORB
models, equivalent to DFOP rate constants

Note

The function is used internally by summary.mkinfit, summary.nlme.mmkin and summary.saem.mmkin.

Author(s)

Johannes Ranke

Examples

fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
endpoints(fit)
Not run:

fit_2 <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE)
endpoints(fit_2)
fit_3 <- mkinfit("SFORB", FOCUS_2006_C, quiet = TRUE)
endpoints(fit_3)

End(Not run)

20 experimental_data_for_UBA_2019

experimental_data_for_UBA_2019

Experimental datasets used for development and testing of error mod-
els

Description

The 12 datasets were extracted from active substance evaluation dossiers published by EFSA. Ki-
netic evaluations shown for these datasets are intended to illustrate and advance error model specifi-
cations. The fact that these data and some results are shown here do not imply a license to use them
in the context of pesticide registrations, as the use of the data may be constrained by data protection
regulations.

Preprocessing of data was performed based on the recommendations of the FOCUS kinetics work-
group (FOCUS, 2014) as described below.

Datasets 1 and 2 are from the Renewal Assessment Report (RAR) for imazamox (France, 2015, p.
15). For setting values reported as zero, an LOQ of 0.1 was assumed. Metabolite residues reported
for day zero were added to the parent compound residues.

Datasets 3 and 4 are from the Renewal Assessment Report (RAR) for isofetamid (Belgium, 2014, p.
8) and show the data for two different radiolabels. For dataset 4, the value given for the metabolite
in the day zero sampling in replicate B was added to the parent compound, following the respective
FOCUS recommendation.

Dataset 5 is from the Renewal Assessment Report (RAR) for ethofumesate (Austria, 2015, p. 16).

Datasets 6 to 10 are from the Renewal Assessment Report (RAR) for glyphosate (Germany, 2013,
pages 8, 28, 50, 51). For the initial sampling, the residues given for the metabolite were added to
the parent value, following the recommendation of the FOCUS kinetics workgroup.

Dataset 11 is from the Renewal Assessment Report (RAR) for 2,4-D (Hellas, 2013, p. 644). Values
reported as zero were set to NA, with the exception of the day three sampling of metabolite A2,
which was set to one half of the LOD reported to be 1% AR.

Dataset 12 is from the Renewal Assessment Report (RAR) for thifensulfuron-methyl (United King-
dom, 2014, p. 81).

Usage

experimental_data_for_UBA_2019

Format

A list containing twelve datasets as an R6 class defined by mkinds, each containing, among others,
the following components

title The name of the dataset, e.g. Soil 1

data A data frame with the data in the form expected by mkinfit

experimental_data_for_UBA_2019 21

Source

Austria (2015). Ethofumesate Renewal Assessment Report Volume 3 Annex B.8 (AS)

Belgium (2014). Isofetamid (IKF-5411) Draft Assessment Report Volume 3 Annex B.8 (AS)

France (2015). Imazamox Draft Renewal Assessment Report Volume 3 Annex B.8 (AS)

FOCUS (2014) “Generic guidance for Estimating Persistence and Degradation Kinetics from En-
vironmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, Version 1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/
projects/degradation-kinetics

Germany (2013). Renewal Assessment Report Glyphosate Volume 3 Annex B.8: Environmental
Fate and Behaviour

Hellas (2013). Renewal Assessment Report 2,4-D Volume 3 Annex B.8: Fate and behaviour in the
environment

Ranke (2019) Documentation of results obtained for the error model expertise written for the Ger-
man Umweltbundesamt.

United Kingdom (2014). Thifensulfuron-methyl - Annex B.8 (Volume 3) to the Report and Pro-
posed Decision of the United Kingdom made to the European Commission under Regulation (EC)
No. 1141/2010 for renewal of an active substance

Examples

Not run:

Model definitions
sfo_sfo <- mkinmod(

parent = mkinsub("SFO", to = "A1"),
A1 = mkinsub("SFO"),
use_of_ff = "max"

)

dfop_sfo <- mkinmod(
parent = mkinsub("DFOP", to = "A1"),
A1 = mkinsub("SFO"),
use_of_ff = "max"

)

sfo_sfo_sfo <- mkinmod(
parent = mkinsub("SFO", to = "A1"),
A1 = mkinsub("SFO", to = "A2"),
A2 = mkinsub("SFO"),
use_of_ff = "max"

)

dfop_sfo_sfo <- mkinmod(
parent = mkinsub("DFOP", to = "A1"),
A1 = mkinsub("SFO", to = "A2"),
A2 = mkinsub("SFO"),
use_of_ff = "max"

)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

22 FOCUS_2006_datasets

d_1_2 <- lapply(experimental_data_for_UBA_2019[1:2], function(x) x$data)
names(d_1_2) <- paste("Soil", 1:2)

f_1_2_tc <- mmkin(list("DFOP-SFO-SFO" = dfop_sfo_sfo), d_1_2, error_model = "tc")

plot(f_1_2_tc, resplot = "errmod")

End(Not run)

FOCUS_2006_datasets Datasets A to F from the FOCUS Kinetics report from 2006

Description

Data taken from FOCUS (2006), p. 258.

Usage

FOCUS_2006_A
FOCUS_2006_B
FOCUS_2006_C
FOCUS_2006_D
FOCUS_2006_E
FOCUS_2006_F

Format

6 datasets with observations on the following variables.

name a factor containing the name of the observed variable

time a numeric vector containing time points

value a numeric vector containing concentrations in percent of applied radioactivity

Source

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

FOCUS_2006_C

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

FOCUS_2006_DFOP_ref_A_to_B 23

FOCUS_2006_DFOP_ref_A_to_B

Results of fitting the DFOP model to Datasets A to B of FOCUS (2006)

Description

A table with the fitted parameters and the resulting DT50 and DT90 values generated with different
software packages. Taken directly from FOCUS (2006). The results from fitting the data with the
Topfit software was removed, as the initial concentration of the parent compound was fixed to a
value of 100 in this fit.

Usage

FOCUS_2006_DFOP_ref_A_to_B

Format

A data frame containing the following variables.

package a factor giving the name of the software package

M0 The fitted initial concentration of the parent compound

f The fitted f parameter

k1 The fitted k1 parameter

k2 The fitted k2 parameter

DT50 The resulting half-life of the parent compound

DT90 The resulting DT90 of the parent compound

dataset The FOCUS dataset that was used

Source

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

data(FOCUS_2006_DFOP_ref_A_to_B)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

24 FOCUS_2006_FOMC_ref_A_to_F

FOCUS_2006_FOMC_ref_A_to_F

Results of fitting the FOMC model to Datasets A to F of FOCUS (2006)

Description

A table with the fitted parameters and the resulting DT50 and DT90 values generated with different
software packages. Taken directly from FOCUS (2006). The results from fitting the data with the
Topfit software was removed, as the initial concentration of the parent compound was fixed to a
value of 100 in this fit.

Usage

FOCUS_2006_FOMC_ref_A_to_F

Format

A data frame containing the following variables.

package a factor giving the name of the software package

M0 The fitted initial concentration of the parent compound

alpha The fitted alpha parameter

beta The fitted beta parameter

DT50 The resulting half-life of the parent compound

DT90 The resulting DT90 of the parent compound

dataset The FOCUS dataset that was used

Source

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

data(FOCUS_2006_FOMC_ref_A_to_F)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

FOCUS_2006_HS_ref_A_to_F 25

FOCUS_2006_HS_ref_A_to_F

Results of fitting the HS model to Datasets A to F of FOCUS (2006)

Description

A table with the fitted parameters and the resulting DT50 and DT90 values generated with different
software packages. Taken directly from FOCUS (2006). The results from fitting the data with the
Topfit software was removed, as the initial concentration of the parent compound was fixed to a
value of 100 in this fit.

Usage

FOCUS_2006_HS_ref_A_to_F

Format

A data frame containing the following variables.

package a factor giving the name of the software package

M0 The fitted initial concentration of the parent compound

tb The fitted tb parameter

k1 The fitted k1 parameter

k2 The fitted k2 parameter

DT50 The resulting half-life of the parent compound

DT90 The resulting DT90 of the parent compound

dataset The FOCUS dataset that was used

Source

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

data(FOCUS_2006_HS_ref_A_to_F)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

26 FOCUS_2006_SFO_ref_A_to_F

FOCUS_2006_SFO_ref_A_to_F

Results of fitting the SFO model to Datasets A to F of FOCUS (2006)

Description

A table with the fitted parameters and the resulting DT50 and DT90 values generated with different
software packages. Taken directly from FOCUS (2006). The results from fitting the data with the
Topfit software was removed, as the initial concentration of the parent compound was fixed to a
value of 100 in this fit.

Usage

FOCUS_2006_SFO_ref_A_to_F

Format

A data frame containing the following variables.

package a factor giving the name of the software package

M0 The fitted initial concentration of the parent compound

k The fitted first-order degradation rate constant

DT50 The resulting half-life of the parent compound

DT90 The resulting DT90 of the parent compound

dataset The FOCUS dataset that was used

Source

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

data(FOCUS_2006_SFO_ref_A_to_F)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

focus_soil_moisture 27

focus_soil_moisture FOCUS default values for soil moisture contents at field capacity,
MWHC and 1/3 bar

Description

The value were transcribed from p. 36. The table assumes field capacity corresponds to pF2,
MWHC to pF 1 and 1/3 bar to pF 2.5.

Usage

focus_soil_moisture

Format

A matrix with upper case USDA soil classes as row names, and water tension (’pF1’, ’pF2’, ’pF
2.5’) as column names

Source

Anonymous (2014) Generic Guidance for Tier 1 FOCUS Ground Water Assessment Version 2.2,
May 2014 https://esdac.jrc.ec.europa.eu/projects/ground-water

Examples

focus_soil_moisture

FOMC.solution First-Order Multi-Compartment kinetics

Description

Function describing exponential decline from a defined starting value, with a decreasing rate con-
stant.

Usage

FOMC.solution(t, parent_0, alpha, beta)

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

alpha Shape parameter determined by coefficient of variation of rate constant values.

beta Location parameter.

https://esdac.jrc.ec.europa.eu/projects/ground-water

28 f_time_norm_focus

Details

The form given here differs slightly from the original reference by Gustafson and Holden (1990).
The parameter beta corresponds to 1/beta in the original equation.

Value

The value of the response variable at time t.

Note

The solution of the FOMC kinetic model reduces to the SFO.solution for large values of alpha
and beta with k = β

α .

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

FOCUS (2014) “Generic guidance for Estimating Persistence and Degradation Kinetics from En-
vironmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, Version 1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/
projects/degradation-kinetics

Gustafson DI and Holden LR (1990) Nonlinear pesticide dissipation in soil: A new model based on
spatial variability. Environmental Science and Technology 24, 1032-1038

See Also

Other parent solutions: DFOP.solution(), HS.solution(), IORE.solution(), SFO.solution(),
SFORB.solution(), logistic.solution()

Examples

plot(function(x) FOMC.solution(x, 100, 10, 2), 0, 2, ylim = c(0, 100))

f_time_norm_focus Normalisation factors for aerobic soil degradation according to FO-
CUS guidance

Description

Time step normalisation factors for aerobic soil degradation as described in Appendix 8 to the
FOCUS kinetics guidance (FOCUS 2014, p. 369).

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

f_time_norm_focus 29

Usage

f_time_norm_focus(object, ...)

S3 method for class 'numeric'
f_time_norm_focus(
object,
moisture = NA,
field_moisture = NA,
temperature = object,
Q10 = 2.58,
walker = 0.7,
f_na = NA,
...

)

S3 method for class 'mkindsg'
f_time_norm_focus(
object,
study_moisture_ref_source = c("auto", "meta", "focus"),
Q10 = 2.58,
walker = 0.7,
f_na = NA,
...

)

Arguments

object An object containing information used for the calculations

... Currently not used

moisture Numeric vector of moisture contents in \% w/w

field_moisture Numeric vector of moisture contents at field capacity (pF2) in \% w/w

temperature Numeric vector of temperatures in °C

Q10 The Q10 value used for temperature normalisation

walker The Walker exponent used for moisture normalisation

f_na The factor to use for NA values. If set to NA, only factors for complete cases
will be returned.

study_moisture_ref_source

Source for the reference value used to calculate the study moisture. If ’auto’,
preference is given to a reference moisture given in the meta information, other-
wise the focus soil moisture for the soil class is used

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

30 hierarchical_kinetics

//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

focus_soil_moisture

Examples

f_time_norm_focus(25, 20, 25) # 1.37, compare FOCUS 2014 p. 184

D24_2014$meta
No moisture normalisation in the first dataset, so we use f_na = 1 to get
temperature only normalisation as in the EU evaluation
f_time_norm_focus(D24_2014, study_moisture_ref_source = "focus", f_na = 1)

get_deg_func Retrieve a degradation function from the mmkin namespace

Description

Retrieve a degradation function from the mmkin namespace

Usage

get_deg_func()

Value

A function that was likely previously assigned from within nlme.mmkin

hierarchical_kinetics Hierarchical kinetics template

Description

R markdown format for setting up hierarchical kinetics based on a template provided with the
mkin package. This format is based on rmarkdown::pdf_document. Chunk options are adapted.
Echoing R code from code chunks and caching are turned on per default. character for prepending
output from code chunks is set to the empty string, code tidying is off, figure alignment defaults to
centering, and positioning of figures is set to "H", which means that figures will not move around
in the document, but stay where the user includes them.

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

HS.solution 31

Usage

hierarchical_kinetics(..., keep_tex = FALSE)

Arguments

... Arguments to rmarkdown::pdf_document

keep_tex Keep the intermediate tex file used in the conversion to PDF. Note that this argu-
ment does not control whether to keep the auxiliary files (e.g., ‘.aux’) generated
by LaTeX when compiling ‘.tex’ to ‘.pdf’. To keep these files, you may set
options(tinytex.clean = FALSE).

Details

The latter feature (positioning the figures with "H") depends on the LaTeX package ’float’. In
addition, the LaTeX package ’listing’ is used in the template for showing model fit summaries in
the Appendix. This means that the LaTeX packages ’float’ and ’listing’ need to be installed in the
TeX distribution used.

On Windows, the easiest way to achieve this (if no TeX distribution is present before) is to install
the ’tinytex’ R package, to run ’tinytex::install_tinytex()’ to get the basic tiny Tex distribution, and
then to run ’tinytex::tlmgr_install(c("float", "listing"))’.

Value

R Markdown output format to pass to render

Examples

Not run:
library(rmarkdown)
The following is now commented out after the relase of v1.2.3 for the generation
of online docs, as the command creates a directory and opens an editor
#draft("example_analysis.rmd", template = "hierarchical_kinetics", package = "mkin")

End(Not run)

HS.solution Hockey-Stick kinetics

Description

Function describing two exponential decline functions with a break point between them.

Usage

HS.solution(t, parent_0, k1, k2, tb)

32 illparms

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

k1 First kinetic constant.

k2 Second kinetic constant.

tb Break point. Before this time, exponential decline according to k1 is calculated,
after this time, exponential decline proceeds according to k2.

Value

The value of the response variable at time t.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), IORE.solution(), SFO.solution(),
SFORB.solution(), logistic.solution()

Examples

plot(function(x) HS.solution(x, 100, 2, 0.3, 0.5), 0, 2, ylim=c(0,100))

illparms Method to get the names of ill-defined parameters

Description

The method for generalised nonlinear regression fits as obtained with mkinfit and mmkin checks
if the degradation parameters pass the Wald test (in degradation kinetics often simply called t-
test) for significant difference from zero. For this test, the parameterisation without parameter
transformations is used.

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

illparms 33

Usage

illparms(object, ...)

S3 method for class 'mkinfit'
illparms(object, conf.level = 0.95, ...)

S3 method for class 'illparms.mkinfit'
print(x, ...)

S3 method for class 'mmkin'
illparms(object, conf.level = 0.95, ...)

S3 method for class 'illparms.mmkin'
print(x, ...)

S3 method for class 'saem.mmkin'
illparms(
object,
conf.level = 0.95,
random = TRUE,
errmod = TRUE,
slopes = TRUE,
...

)

S3 method for class 'illparms.saem.mmkin'
print(x, ...)

S3 method for class 'mhmkin'
illparms(object, conf.level = 0.95, random = TRUE, errmod = TRUE, ...)

S3 method for class 'illparms.mhmkin'
print(x, ...)

Arguments

object The object to investigate

... For potential future extensions

conf.level The confidence level for checking p values

x The object to be printed

random For hierarchical fits, should random effects be tested?

errmod For hierarchical fits, should error model parameters be tested?

slopes For hierarchical saem fits using saemix as backend, should slope parameters in
the covariate model(starting with ’beta_’) be tested?

34 ilr

Details

The method for hierarchical model fits, also known as nonlinear mixed-effects model fits as obtained
with saem and mhmkin checks if any of the confidence intervals for the random effects expressed
as standard deviations include zero, and if the confidence intervals for the error model parameters
include zero.

Value

For mkinfit or saem objects, a character vector of parameter names. For mmkin or mhmkin objects,
a matrix like object of class ’illparms.mmkin’ or ’illparms.mhmkin’.

Note

All return objects have printing methods. For the single fits, printing does not output anything in
the case no ill-defined parameters are found.

Examples

fit <- mkinfit("FOMC", FOCUS_2006_A, quiet = TRUE)
illparms(fit)
Not run:
fits <- mmkin(

c("SFO", "FOMC"),
list("FOCUS A" = FOCUS_2006_A,

"FOCUS C" = FOCUS_2006_C),
quiet = TRUE)

illparms(fits)

End(Not run)

ilr Function to perform isometric log-ratio transformation

Description

This implementation is a special case of the class of isometric log-ratio transformations.

Usage

ilr(x)

invilr(x)

Arguments

x A numeric vector. Naturally, the forward transformation is only sensible for
vectors with all elements being greater than zero.

intervals.saem.mmkin 35

Value

The result of the forward or backward transformation. The returned components always sum to 1
for the case of the inverse log-ratio transformation.

Author(s)

René Lehmann and Johannes Ranke

References

Peter Filzmoser, Karel Hron (2008) Outlier Detection for Compositional Data Using Robust Meth-
ods. Math Geosci 40 233-248

See Also

Another implementation can be found in R package robCompositions.

Examples

Order matters
ilr(c(0.1, 1, 10))
ilr(c(10, 1, 0.1))
Equal entries give ilr transformations with zeros as elements
ilr(c(3, 3, 3))
Almost equal entries give small numbers
ilr(c(0.3, 0.4, 0.3))
Only the ratio between the numbers counts, not their sum
invilr(ilr(c(0.7, 0.29, 0.01)))
invilr(ilr(2.1 * c(0.7, 0.29, 0.01)))
Inverse transformation of larger numbers gives unequal elements
invilr(-10)
invilr(c(-10, 0))
The sum of the elements of the inverse ilr is 1
sum(invilr(c(-10, 0)))
This is why we do not need all elements of the inverse transformation to go back:
a <- c(0.1, 0.3, 0.5)
b <- invilr(a)
length(b) # Four elements
ilr(c(b[1:3], 1 - sum(b[1:3]))) # Gives c(0.1, 0.3, 0.5)

intervals.saem.mmkin Confidence intervals for parameters in saem.mmkin objects

Description

Confidence intervals for parameters in saem.mmkin objects

36 IORE.solution

Usage

S3 method for class 'saem.mmkin'
intervals(object, level = 0.95, backtransform = TRUE, ...)

Arguments

object The fitted saem.mmkin object

level The confidence level. Must be the default of 0.95 as this is what is available in
the saemix object

backtransform In case the model was fitted with mkin transformations, should we backtrans-
form the parameters where a one to one correlation between transformed and
backtransformed parameters exists?

... For compatibility with the generic method

Value

An object with ’intervals.saem.mmkin’ and ’intervals.lme’ in the class attribute

IORE.solution Indeterminate order rate equation kinetics

Description

Function describing exponential decline from a defined starting value, with a concentration depen-
dent rate constant.

Usage

IORE.solution(t, parent_0, k__iore, N)

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

k__iore Rate constant. Note that this depends on the concentration units used.

N Exponent describing the nonlinearity of the rate equation

Value

The value of the response variable at time t.

Note

The solution of the IORE kinetic model reduces to the SFO.solution if N = 1. The parameters of
the IORE model can be transformed to equivalent parameters of the FOMC mode - see the NAFTA
guidance for details.

llhist 37

References

NAFTA Technical Working Group on Pesticides (not dated) Guidance for Evaluating and Calculat-
ing Degradation Kinetics in Environmental Media

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), HS.solution(), SFO.solution(),
SFORB.solution(), logistic.solution()

Examples

plot(function(x) IORE.solution(x, 100, 0.2, 1.3), 0, 2, ylim = c(0, 100))
Not run:

fit.fomc <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
fit.iore <- mkinfit("IORE", FOCUS_2006_C, quiet = TRUE)
fit.iore.deS <- mkinfit("IORE", FOCUS_2006_C, solution_type = "deSolve", quiet = TRUE)

print(data.frame(fit.fomc$par, fit.iore$par, fit.iore.deS$par,
row.names = paste("model par", 1:4)))

print(rbind(fomc = endpoints(fit.fomc)$distimes, iore = endpoints(fit.iore)$distimes,
iore.deS = endpoints(fit.iore)$distimes))

End(Not run)

llhist Plot the distribution of log likelihoods from multistart objects

Description

Produces a histogram of log-likelihoods. In addition, the likelihood of the original fit is shown as a
red vertical line.

Usage

llhist(object, breaks = "Sturges", lpos = "topleft", main = "", ...)

Arguments

object The multistart object
breaks Passed to hist
lpos Positioning of the legend.
main Title of the plot
... Passed to hist

See Also

multistart

38 loftest

loftest Lack-of-fit test for models fitted to data with replicates

Description

This is a generic function with a method currently only defined for mkinfit objects. It fits an anova
model to the data contained in the object and compares the likelihoods using the likelihood ratio
test lrtest.default from the lmtest package.

Usage

loftest(object, ...)

S3 method for class 'mkinfit'
loftest(object, ...)

Arguments

object A model object with a defined loftest method

... Not used

Details

The anova model is interpreted as the simplest form of an mkinfit model, assuming only a constant
variance about the means, but not enforcing any structure of the means, so we have one model
parameter for every mean of replicate samples.

See Also

lrtest

Examples

Not run:
test_data <- subset(synthetic_data_for_UBA_2014[[12]]$data, name == "parent")
sfo_fit <- mkinfit("SFO", test_data, quiet = TRUE)
plot_res(sfo_fit) # We see a clear pattern in the residuals
loftest(sfo_fit) # We have a clear lack of fit
#
We try a different model (the one that was used to generate the data)
dfop_fit <- mkinfit("DFOP", test_data, quiet = TRUE)
plot_res(dfop_fit) # We don't see systematic deviations, but heteroscedastic residuals
therefore we should consider adapting the error model, although we have
loftest(dfop_fit) # no lack of fit
#
This is the anova model used internally for the comparison
test_data_anova <- test_data
test_data_anova$time <- as.factor(test_data_anova$time)

logistic.solution 39

anova_fit <- lm(value ~ time, data = test_data_anova)
summary(anova_fit)
logLik(anova_fit) # We get the same likelihood and degrees of freedom
#
test_data_2 <- synthetic_data_for_UBA_2014[[12]]$data
m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"),

M1 = list(type = "SFO", to = "M2"),
M2 = list(type = "SFO"), use_of_ff = "max")

sfo_lin_fit <- mkinfit(m_synth_SFO_lin, test_data_2, quiet = TRUE)
plot_res(sfo_lin_fit) # not a good model, we try parallel formation
loftest(sfo_lin_fit)
#
m_synth_SFO_par <- mkinmod(parent = list(type = "SFO", to = c("M1", "M2")),

M1 = list(type = "SFO"),
M2 = list(type = "SFO"), use_of_ff = "max")

sfo_par_fit <- mkinfit(m_synth_SFO_par, test_data_2, quiet = TRUE)
plot_res(sfo_par_fit) # much better for metabolites
loftest(sfo_par_fit)
#
m_synth_DFOP_par <- mkinmod(parent = list(type = "DFOP", to = c("M1", "M2")),

M1 = list(type = "SFO"),
M2 = list(type = "SFO"), use_of_ff = "max")

dfop_par_fit <- mkinfit(m_synth_DFOP_par, test_data_2, quiet = TRUE)
plot_res(dfop_par_fit) # No visual lack of fit
loftest(dfop_par_fit) # no lack of fit found by the test
#
The anova model used for comparison in the case of transformation products
test_data_anova_2 <- dfop_par_fit$data
test_data_anova_2$variable <- as.factor(test_data_anova_2$variable)
test_data_anova_2$time <- as.factor(test_data_anova_2$time)
anova_fit_2 <- lm(observed ~ time:variable - 1, data = test_data_anova_2)
summary(anova_fit_2)

End(Not run)

logistic.solution Logistic kinetics

Description

Function describing exponential decline from a defined starting value, with an increasing rate con-
stant, supposedly caused by microbial growth

Usage

logistic.solution(t, parent_0, kmax, k0, r)

40 logistic.solution

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

kmax Maximum rate constant.

k0 Minimum rate constant effective at time zero.

r Growth rate of the increase in the rate constant.

Value

The value of the response variable at time t.

Note

The solution of the logistic model reduces to the SFO.solution if k0 is equal to kmax.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), HS.solution(), IORE.solution(),
SFO.solution(), SFORB.solution()

Examples

Reproduce the plot on page 57 of FOCUS (2014)
plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.2),

from = 0, to = 100, ylim = c(0, 100),
xlab = "Time", ylab = "Residue")

plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.4),
from = 0, to = 100, add = TRUE, lty = 2, col = 2)

plot(function(x) logistic.solution(x, 100, 0.08, 0.0001, 0.8),
from = 0, to = 100, add = TRUE, lty = 3, col = 3)

plot(function(x) logistic.solution(x, 100, 0.08, 0.001, 0.2),
from = 0, to = 100, add = TRUE, lty = 4, col = 4)

plot(function(x) logistic.solution(x, 100, 0.08, 0.08, 0.2),
from = 0, to = 100, add = TRUE, lty = 5, col = 5)

legend("topright", inset = 0.05,
legend = paste0("k0 = ", c(0.0001, 0.0001, 0.0001, 0.001, 0.08),

", r = ", c(0.2, 0.4, 0.8, 0.2, 0.2)),
lty = 1:5, col = 1:5)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

logLik.mkinfit 41

Fit with synthetic data
logistic <- mkinmod(parent = mkinsub("logistic"))

sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
parms_logistic <- c(kmax = 0.08, k0 = 0.0001, r = 0.2)
d_logistic <- mkinpredict(logistic,

parms_logistic, c(parent = 100),
sampling_times)

d_2_1 <- add_err(d_logistic,
sdfunc = function(x) sigma_twocomp(x, 0.5, 0.07),
n = 1, reps = 2, digits = 5, LOD = 0.1, seed = 123456)[[1]]

m <- mkinfit("logistic", d_2_1, quiet = TRUE)
plot_sep(m)
summary(m)$bpar
endpoints(m)$distimes

logLik.mkinfit Calculated the log-likelihood of a fitted mkinfit object

Description

This function returns the product of the likelihood densities of each observed value, as calculated
as part of the fitting procedure using dnorm, i.e. assuming normal distribution, and with the means
predicted by the degradation model, and the standard deviations predicted by the error model.

Usage

S3 method for class 'mkinfit'
logLik(object, ...)

Arguments

object An object of class mkinfit.
... For compatibility with the generic method

Details

The total number of estimated parameters returned with the value of the likelihood is calculated as
the sum of fitted degradation model parameters and the fitted error model parameters.

Value

An object of class logLik with the number of estimated parameters (degradation model parameters
plus variance model parameters) as attribute.

Author(s)

Johannes Ranke

42 logLik.saem.mmkin

See Also

Compare the AIC of columns of mmkin objects using AIC.mmkin.

Examples

Not run:
sfo_sfo <- mkinmod(

parent = mkinsub("SFO", to = "m1"),
m1 = mkinsub("SFO")

)
d_t <- subset(FOCUS_2006_D, value != 0)
f_nw <- mkinfit(sfo_sfo, d_t, quiet = TRUE) # no weighting (weights are unity)
f_obs <- update(f_nw, error_model = "obs")
f_tc <- update(f_nw, error_model = "tc")
AIC(f_nw, f_obs, f_tc)

End(Not run)

logLik.saem.mmkin logLik method for saem.mmkin objects

Description

logLik method for saem.mmkin objects

Usage

S3 method for class 'saem.mmkin'
logLik(object, ..., method = c("is", "lin", "gq"))

Arguments

object The fitted saem.mmkin object

... Passed to saemix::logLik.SaemixObject

method Passed to saemix::logLik.SaemixObject

lrtest.mkinfit 43

lrtest.mkinfit Likelihood ratio test for mkinfit models

Description

Compare two mkinfit models based on their likelihood. If two fitted mkinfit objects are given as
arguments, it is checked if they have been fitted to the same data. It is the responsibility of the user
to make sure that the models are nested, i.e. one of them has less degrees of freedom and can be
expressed by fixing the parameters of the other.

Usage

S3 method for class 'mkinfit'
lrtest(object, object_2 = NULL, ...)

S3 method for class 'mmkin'
lrtest(object, ...)

Arguments

object An mkinfit object, or an mmkin column object containing two fits to the same
data.

object_2 Optionally, another mkinfit object fitted to the same data.

... Argument to mkinfit, passed to update.mkinfit for creating the alternative
fitted object.

Details

Alternatively, an argument to mkinfit can be given which is then passed to update.mkinfit to
obtain the alternative model.

The comparison is then made by the lrtest.default method from the lmtest package. The model
with the higher number of fitted parameters (alternative hypothesis) is listed first, then the model
with the lower number of fitted parameters (null hypothesis).

Examples

Not run:
test_data <- subset(synthetic_data_for_UBA_2014[[12]]$data, name == "parent")
sfo_fit <- mkinfit("SFO", test_data, quiet = TRUE)
dfop_fit <- mkinfit("DFOP", test_data, quiet = TRUE)
lrtest(dfop_fit, sfo_fit)
lrtest(sfo_fit, dfop_fit)

The following two examples are commented out as they fail during
generation of the static help pages by pkgdown
#lrtest(dfop_fit, error_model = "tc")
#lrtest(dfop_fit, fixed_parms = c(k2 = 0))

44 max_twa_parent

However, this equivalent syntax also works for static help pages
lrtest(dfop_fit, update(dfop_fit, error_model = "tc"))
lrtest(dfop_fit, update(dfop_fit, fixed_parms = c(k2 = 0)))

End(Not run)

max_twa_parent Function to calculate maximum time weighted average concentrations
from kinetic models fitted with mkinfit

Description

This function calculates maximum moving window time weighted average concentrations (TWAs)
for kinetic models fitted with mkinfit. Currently, only calculations for the parent are implemented
for the SFO, FOMC, DFOP and HS models, using the analytical formulas given in the PEC soil
section of the FOCUS guidance.

Usage

max_twa_parent(fit, windows)

max_twa_sfo(M0 = 1, k, t)

max_twa_fomc(M0 = 1, alpha, beta, t)

max_twa_dfop(M0 = 1, k1, k2, g, t)

max_twa_hs(M0 = 1, k1, k2, tb, t)

Arguments

fit An object of class mkinfit.
windows The width of the time windows for which the TWAs should be calculated.
M0 The initial concentration for which the maximum time weighted average over

the decline curve should be calculated. The default is to use a value of 1, which
means that a relative maximum time weighted average factor (f_twa) is calcu-
lated.

k The rate constant in the case of SFO kinetics.
t The width of the time window.
alpha Parameter of the FOMC model.
beta Parameter of the FOMC model.
k1 The first rate constant of the DFOP or the HS kinetics.
k2 The second rate constant of the DFOP or the HS kinetics.
g Parameter of the DFOP model.
tb Parameter of the HS model.

mccall81_245T 45

Value

For max_twa_parent, a numeric vector, named using the windows argument. For the other func-
tions, a numeric vector of length one (also known as ’a number’).

Author(s)

Johannes Ranke

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
max_twa_parent(fit, c(7, 21))

mccall81_245T Datasets on aerobic soil metabolism of 2,4,5-T in six soils

Description

Time course of 2,4,5-trichlorophenoxyacetic acid, and the corresponding 2,4,5-trichlorophenol and
2,4,5-trichloroanisole as recovered in diethylether extracts.

Usage

mccall81_245T

Format

A dataframe containing the following variables.

name the name of the compound observed. Note that T245 is used as an acronym for 2,4,5-T. T245
is a legitimate object name in R, which is necessary for specifying models using mkinmod.

time a numeric vector containing sampling times in days after treatment

value a numeric vector containing concentrations in percent of applied radioactivity

soil a factor containing the name of the soil

Source

McCall P, Vrona SA, Kelley SS (1981) Fate of uniformly carbon-14 ring labelled 2,4,5-Trichlorophenoxyacetic
acid and 2,4-dichlorophenoxyacetic acid. J Agric Chem 29, 100-107 doi:10.1021/jf00103a026

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
https://doi.org/10.1021/jf00103a026

46 mean_degparms

Examples

SFO_SFO_SFO <- mkinmod(T245 = list(type = "SFO", to = "phenol"),
phenol = list(type = "SFO", to = "anisole"),
anisole = list(type = "SFO"))

Not run:
fit.1 <- mkinfit(SFO_SFO_SFO, subset(mccall81_245T, soil == "Commerce"), quiet = TRUE)
summary(fit.1)$bpar
endpoints(fit.1)
formation fraction from phenol to anisol is practically 1. As we cannot
fix formation fractions when using the ilr transformation, we can turn of
the sink in the model generation
SFO_SFO_SFO_2 <- mkinmod(T245 = list(type = "SFO", to = "phenol"),

phenol = list(type = "SFO", to = "anisole", sink = FALSE),
anisole = list(type = "SFO"))

fit.2 <- mkinfit(SFO_SFO_SFO_2, subset(mccall81_245T, soil == "Commerce"),
quiet = TRUE)

summary(fit.2)$bpar
endpoints(fit.1)
plot_sep(fit.2)

End(Not run)

mean_degparms Calculate mean degradation parameters for an mmkin row object

Description

Calculate mean degradation parameters for an mmkin row object

Usage

mean_degparms(
object,
random = FALSE,
test_log_parms = FALSE,
conf.level = 0.6,
default_log_parms = NA

)

Arguments

object An mmkin row object containing several fits of the same model to different
datasets

random Should a list with fixed and random effects be returned?

test_log_parms If TRUE, log parameters are only considered in the mean calculations if their
untransformed counterparts (most likely rate constants) pass the t-test for signif-
icant difference from zero.

mhmkin 47

conf.level Possibility to adjust the required confidence level for parameter that are tested if
requested by ’test_log_parms’.

default_log_parms

If set to a numeric value, this is used as a default value for the tested log param-
eters that failed the t-test.

Value

If random is FALSE (default), a named vector containing mean values of the fitted degradation
model parameters. If random is TRUE, a list with fixed and random effects, in the format required
by the start argument of nlme for the case of a single grouping variable ds.

mhmkin Fit nonlinear mixed-effects models built from one or more kinetic
degradation models and one or more error models

Description

The name of the methods expresses that (multiple) hierarchichal (also known as multilevel) multicompartment
kinetic models are fitted. Our kinetic models are nonlinear, so we can use various nonlinear mixed-
effects model fitting functions.

Usage

mhmkin(objects, ...)

S3 method for class 'mmkin'
mhmkin(objects, ...)

S3 method for class 'list'
mhmkin(
objects,
backend = "saemix",
algorithm = "saem",
no_random_effect = NULL,
...,
cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL

)

S3 method for class 'mhmkin'
x[i, j, ..., drop = FALSE]

S3 method for class 'mhmkin'
print(x, ...)

48 mhmkin

Arguments

objects A list of mmkin objects containing fits of the same degradation models to the
same data, but using different error models. Alternatively, a single mmkin object
containing fits of several degradation models to the same data

... Further arguments that will be passed to the nonlinear mixed-effects model fit-
ting function.

backend The backend to be used for fitting. Currently, only saemix is supported

algorithm The algorithm to be used for fitting (currently not used)

no_random_effect

Default is NULL and will be passed to saem. If a character vector is supplied,
it will be passed to all calls to saem, which will exclude random effects for
all matching parameters. Alternatively, a list of character vectors or an object of
class illparms.mhmkin can be specified. They have to have the same dimensions
that the return object of the current call will have, i.e. the number of rows must
match the number of degradation models in the mmkin object(s), and the number
of columns must match the number of error models used in the mmkin object(s).

cores The number of cores to be used for multicore processing. This is only used
when the cluster argument is NULL. On Windows machines, cores > 1 is not
supported, you need to use the cluster argument to use multiple logical pro-
cessors. Per default, all cores detected by parallel::detectCores() are used,
except on Windows where the default is 1.

cluster A cluster as returned by makeCluster to be used for parallel execution.

x An mhmkin object.

i Row index selecting the fits for specific models

j Column index selecting the fits to specific datasets

drop If FALSE, the method always returns an mhmkin object, otherwise either a list
of fit objects or a single fit object.

Value

A two-dimensional array of fit objects and/or try-errors that can be indexed using the degradation
model names for the first index (row index) and the error model names for the second index (column
index), with class attribute ’mhmkin’.

An object inheriting from mhmkin.

Author(s)

Johannes Ranke

See Also

[.mhmkin for subsetting mhmkin objects

mixed 49

Examples

Not run:
We start with separate evaluations of all the first six datasets with two
degradation models and two error models
f_sep_const <- mmkin(c("SFO", "FOMC"), ds_fomc[1:6], cores = 2, quiet = TRUE)
f_sep_tc <- update(f_sep_const, error_model = "tc")
The mhmkin function sets up hierarchical degradation models aka
nonlinear mixed-effects models for all four combinations, specifying
uncorrelated random effects for all degradation parameters
f_saem_1 <- mhmkin(list(f_sep_const, f_sep_tc), cores = 2)
status(f_saem_1)
The 'illparms' function shows that in all hierarchical fits, at least
one random effect is ill-defined (the confidence interval for the
random effect expressed as standard deviation includes zero)
illparms(f_saem_1)
Therefore we repeat the fits, excluding the ill-defined random effects
f_saem_2 <- update(f_saem_1, no_random_effect = illparms(f_saem_1))
status(f_saem_2)
illparms(f_saem_2)
Model comparisons show that FOMC with two-component error is preferable,
and confirms our reduction of the default parameter model
anova(f_saem_1)
anova(f_saem_2)
The convergence plot for the selected model looks fine
saemix::plot(f_saem_2[["FOMC", "tc"]]$so, plot.type = "convergence")
The plot of predictions versus data shows that we have a pretty data-rich
situation with homogeneous distribution of residuals, because we used the
same degradation model, error model and parameter distribution model that
was used in the data generation.
plot(f_saem_2[["FOMC", "tc"]])
We can specify the same parameter model reductions manually
no_ranef <- list("parent_0", "log_beta", "parent_0", c("parent_0", "log_beta"))
dim(no_ranef) <- c(2, 2)
f_saem_2m <- update(f_saem_1, no_random_effect = no_ranef)
anova(f_saem_2m)

End(Not run)

mixed Create a mixed effects model from an mmkin row object

Description

Create a mixed effects model from an mmkin row object

Usage

mixed(object, ...)

50 mixed

S3 method for class 'mmkin'
mixed(object, method = c("none"), ...)

S3 method for class 'mixed.mmkin'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object An mmkin row object

... Currently not used

method The method to be used

x A mixed.mmkin object to print

digits Number of digits to use for printing.

Value

An object of class ’mixed.mmkin’ which has the observed data in a single dataframe which is
convenient for plotting

Examples

sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
n_biphasic <- 8
err_1 = list(const = 1, prop = 0.07)

DFOP_SFO <- mkinmod(
parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"),
quiet = TRUE)

set.seed(123456)
log_sd <- 0.3
syn_biphasic_parms <- as.matrix(data.frame(

k1 = rlnorm(n_biphasic, log(0.05), log_sd),
k2 = rlnorm(n_biphasic, log(0.01), log_sd),
g = plogis(rnorm(n_biphasic, 0, log_sd)),
f_parent_to_m1 = plogis(rnorm(n_biphasic, 0, log_sd)),
k_m1 = rlnorm(n_biphasic, log(0.002), log_sd)))

ds_biphasic_mean <- lapply(1:n_biphasic,
function(i) {

mkinpredict(DFOP_SFO, syn_biphasic_parms[i,],
c(parent = 100, m1 = 0), sampling_times)

}
)

set.seed(123456L)
ds_biphasic <- lapply(ds_biphasic_mean, function(ds) {

add_err(ds,
sdfunc = function(value) sqrt(err_1$const^2 + value^2 * err_1$prop^2),

mkinds 51

n = 1, secondary = "m1")[[1]]
})

Not run:
f_mmkin <- mmkin(list("DFOP-SFO" = DFOP_SFO), ds_biphasic, error_model = "tc", quiet = TRUE)

f_mixed <- mixed(f_mmkin)
print(f_mixed)
plot(f_mixed)

End(Not run)

mkinds A dataset class for mkin

Description

At the moment this dataset class is hardly used in mkin. For example, mkinfit does not take mkinds
datasets as argument, but works with dataframes such as the on contained in the data field of mkinds
objects. Some datasets provided by this package come as mkinds objects nevertheless.

Usage

S3 method for class 'mkinds'
print(x, data = FALSE, ...)

Arguments

x An mkinds object.

data Should the data be printed?

... Not used.

Public fields

title A full title for the dataset

sampling_times The sampling times

time_unit The time unit

observed Names of the observed variables

unit The unit of the observations

replicates The maximum number of replicates per sampling time

data A data frame with at least the columns name, time and value in order to be compatible with
mkinfit

52 mkindsg

Methods

Public methods:
• mkinds$new()

• mkinds$clone()

Method new(): Create a new mkinds object
Usage:
mkinds$new(title = "", data, time_unit = NA, unit = NA)

Arguments:
title The dataset title
data The data
time_unit The time unit
unit The unit of the observations

Method clone(): The objects of this class are cloneable with this method.
Usage:
mkinds$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

mds <- mkinds$new("FOCUS A", FOCUS_2006_A)
print(mds)

mkindsg A class for dataset groups for mkin

Description

A container for working with datasets that share at least one compound, so that combined evalua-
tions are desirable.

Time normalisation factors are initialised with a value of 1 for each dataset if no data are supplied.

Usage

S3 method for class 'mkindsg'
print(x, data = FALSE, verbose = data, ...)

Arguments

x An mkindsg object.
data Should the mkinds objects be printed with their data?
verbose Should the mkinds objects be printed?
... Not used.

mkindsg 53

Public fields

title A title for the dataset group

ds A list of mkinds objects

observed_n Occurrence counts of compounds in datasets

f_time_norm Time normalisation factors

meta A data frame with a row for each dataset, containing additional information in the form of
categorical data (factors) or numerical data (e.g. temperature, moisture, or covariates like soil
pH).

Methods

Public methods:

• mkindsg$new()

• mkindsg$clone()

Method new(): Create a new mkindsg object

Usage:

mkindsg$new(title = "", ds, f_time_norm = rep(1, length(ds)), meta)

Arguments:

title The title

ds A list of mkinds objects

f_time_norm Time normalisation factors

meta The meta data

Method clone(): The objects of this class are cloneable with this method.

Usage:

mkindsg$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

mdsg <- mkindsg$new("Experimental X", experimental_data_for_UBA_2019[6:10])
print(mdsg)
print(mdsg, verbose = TRUE)
print(mdsg, verbose = TRUE, data = TRUE)

54 mkinerrmin

mkinerrmin Calculate the minimum error to assume in order to pass the variance
test

Description

This function finds the smallest relative error still resulting in passing the chi-squared test as defined
in the FOCUS kinetics report from 2006.

Usage

mkinerrmin(fit, alpha = 0.05)

Arguments

fit an object of class mkinfit.

alpha The confidence level chosen for the chi-squared test.

Details

This function is used internally by summary.mkinfit.

Value

A dataframe with the following components:

err.min The relative error, expressed as a fraction.

n.optim The number of optimised parameters attributed to the data series.

df The number of remaining degrees of freedom for the chi2 error level calcula-
tions. Note that mean values are used for the chi2 statistic and therefore every
time point with observed values in the series only counts one time.

The dataframe has one row for the total dataset and one further row for each observed state variable
in the model.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

mkinerrplot 55

Examples

SFO_SFO = mkinmod(parent = mkinsub("SFO", to = "m1"),
m1 = mkinsub("SFO"),
use_of_ff = "max")

fit_FOCUS_D = mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
round(mkinerrmin(fit_FOCUS_D), 4)
Not run:

fit_FOCUS_E = mkinfit(SFO_SFO, FOCUS_2006_E, quiet = TRUE)
round(mkinerrmin(fit_FOCUS_E), 4)

End(Not run)

mkinerrplot Function to plot squared residuals and the error model for an mkin
object

Description

This function plots the squared residuals for the specified subset of the observed variables from an
mkinfit object. In addition, one or more dashed line(s) show the fitted error model. A combined
plot of the fitted model and this error model plot can be obtained with plot.mkinfit using the
argument show_errplot = TRUE.

Usage

mkinerrplot(
object,
obs_vars = names(object$mkinmod$map),
xlim = c(0, 1.1 * max(object$data$predicted)),
xlab = "Predicted",
ylab = "Squared residual",
maxy = "auto",
legend = TRUE,
lpos = "topright",
col_obs = "auto",
pch_obs = "auto",
frame = TRUE,
...

)

Arguments

object A fit represented in an mkinfit object.

obs_vars A character vector of names of the observed variables for which residuals should
be plotted. Defaults to all observed variables in the model

56 mkinfit

xlim plot range in x direction.

xlab Label for the x axis.

ylab Label for the y axis.

maxy Maximum value of the residuals. This is used for the scaling of the y axis and
defaults to "auto".

legend Should a legend be plotted?

lpos Where should the legend be placed? Default is "topright". Will be passed on to
legend.

col_obs Colors for the observed variables.

pch_obs Symbols to be used for the observed variables.

frame Should a frame be drawn around the plots?

... further arguments passed to plot.

Value

Nothing is returned by this function, as it is called for its side effect, namely to produce a plot.

Author(s)

Johannes Ranke

See Also

mkinplot, for a way to plot the data and the fitted lines of the mkinfit object.

Examples

Not run:
model <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
fit <- mkinfit(model, FOCUS_2006_D, error_model = "tc", quiet = TRUE)
mkinerrplot(fit)

End(Not run)

mkinfit Fit a kinetic model to data with one or more state variables

Description

This function maximises the likelihood of the observed data using the Port algorithm stats::nlminb(),
and the specified initial or fixed parameters and starting values. In each step of the optimisation,
the kinetic model is solved using the function mkinpredict(), except if an analytical solution is
implemented, in which case the model is solved using the degradation function in the mkinmod
object. The parameters of the selected error model are fitted simultaneously with the degradation
model parameters, as both of them are arguments of the likelihood function.

mkinfit 57

Usage

mkinfit(
mkinmod,
observed,
parms.ini = "auto",
state.ini = "auto",
err.ini = "auto",
fixed_parms = NULL,
fixed_initials = names(mkinmod$diffs)[-1],
from_max_mean = FALSE,
solution_type = c("auto", "analytical", "eigen", "deSolve"),
method.ode = "lsoda",
use_compiled = "auto",
control = list(eval.max = 300, iter.max = 200),
transform_rates = TRUE,
transform_fractions = TRUE,
quiet = FALSE,
atol = 1e-08,
rtol = 1e-10,
error_model = c("const", "obs", "tc"),
error_model_algorithm = c("auto", "d_3", "direct", "twostep", "threestep", "fourstep",

"IRLS", "OLS"),
reweight.tol = 1e-08,
reweight.max.iter = 10,
trace_parms = FALSE,
test_residuals = FALSE,
...

)

Arguments

mkinmod A list of class mkinmod, containing the kinetic model to be fitted to the data,
or one of the shorthand names ("SFO", "FOMC", "DFOP", "HS", "SFORB",
"IORE"). If a shorthand name is given, a parent only degradation model is
generated for the variable with the highest value in observed.

observed A dataframe with the observed data. The first column called "name" must con-
tain the name of the observed variable for each data point. The second column
must contain the times of observation, named "time". The third column must
be named "value" and contain the observed values. Zero values in the "value"
column will be removed, with a warning, in order to avoid problems with fitting
the two-component error model. This is not expected to be a problem, because
in general, values of zero are not observed in degradation data, because there is
a lower limit of detection.

parms.ini A named vector of initial values for the parameters, including parameters to be
optimised and potentially also fixed parameters as indicated by fixed_parms.
If set to "auto", initial values for rate constants are set to default values. Using
parameter names that are not in the model gives an error.

58 mkinfit

It is possible to only specify a subset of the parameters that the model needs. You
can use the parameter lists "bparms.ode" from a previously fitted model, which
contains the differential equation parameters from this model. This works nicely
if the models are nested. An example is given below.

state.ini A named vector of initial values for the state variables of the model. In case
the observed variables are represented by more than one model variable, the
names will differ from the names of the observed variables (see map component
of mkinmod). The default is to set the initial value of the first model variable to
the mean of the time zero values for the variable with the maximum observed
value, and all others to 0. If this variable has no time zero observations, its initial
value is set to 100.

err.ini A named vector of initial values for the error model parameters to be optimised.
If set to "auto", initial values are set to default values. Otherwise, inital values
for all error model parameters must be given.

fixed_parms The names of parameters that should not be optimised but rather kept at the
values specified in parms.ini. Alternatively, a named numeric vector of pa-
rameters to be fixed, regardless of the values in parms.ini.

fixed_initials The names of model variables for which the initial state at time 0 should be
excluded from the optimisation. Defaults to all state variables except for the
first one.

from_max_mean If this is set to TRUE, and the model has only one observed variable, then data
before the time of the maximum observed value (after averaging for each sam-
pling time) are discarded, and this time is subtracted from all remaining time
values, so the time of the maximum observed mean value is the new time zero.

solution_type If set to "eigen", the solution of the system of differential equations is based on
the spectral decomposition of the coefficient matrix in cases that this is possible.
If set to "deSolve", a numerical ode solver from package deSolve is used. If
set to "analytical", an analytical solution of the model is used. This is only
implemented for relatively simple degradation models. The default is "auto",
which uses "analytical" if possible, otherwise "deSolve" if a compiler is present,
and "eigen" if no compiler is present and the model can be expressed using
eigenvalues and eigenvectors.

method.ode The solution method passed via mkinpredict() to deSolve::ode() in case
the solution type is "deSolve". The default "lsoda" is performant, but sometimes
fails to converge.

use_compiled If set to FALSE, no compiled version of the mkinmod model is used in the calls
to mkinpredict() even if a compiled version is present.

control A list of control arguments passed to stats::nlminb().
transform_rates

Boolean specifying if kinetic rate constants should be transformed in the model
specification used in the fitting for better compliance with the assumption of
normal distribution of the estimator. If TRUE, also alpha and beta parameters
of the FOMC model are log-transformed, as well as k1 and k2 rate constants for
the DFOP and HS models and the break point tb of the HS model. If FALSE,
zero is used as a lower bound for the rates in the optimisation.

mkinfit 59

transform_fractions

Boolean specifying if formation fractions should be transformed in the model
specification used in the fitting for better compliance with the assumption of nor-
mal distribution of the estimator. The default (TRUE) is to do transformations.
If TRUE, the g parameter of the DFOP model is also transformed. Transforma-
tions are described in transform_odeparms.

quiet Suppress printing out the current value of the negative log-likelihood after each
improvement?

atol Absolute error tolerance, passed to deSolve::ode(). Default is 1e-8, which
is lower than the default in the deSolve::lsoda() function which is used per
default.

rtol Absolute error tolerance, passed to deSolve::ode(). Default is 1e-10, much
lower than in deSolve::lsoda().

error_model If the error model is "const", a constant standard deviation is assumed.
If the error model is "obs", each observed variable is assumed to have its own
variance.
If the error model is "tc" (two-component error model), a two component error
model similar to the one described by Rocke and Lorenzato (1995) is used for
setting up the likelihood function. Note that this model deviates from the model
by Rocke and Lorenzato, as their model implies that the errors follow a lognor-
mal distribution for large values, not a normal distribution as assumed by this
method.

error_model_algorithm

If "auto", the selected algorithm depends on the error model. If the error model
is "const", unweighted nonlinear least squares fitting ("OLS") is selected. If the
error model is "obs", or "tc", the "d_3" algorithm is selected.
The algorithm "d_3" will directly minimize the negative log-likelihood and in-
dependently also use the three step algorithm described below. The fit with the
higher likelihood is returned.
The algorithm "direct" will directly minimize the negative log-likelihood.
The algorithm "twostep" will minimize the negative log-likelihood after an ini-
tial unweighted least squares optimisation step.
The algorithm "threestep" starts with unweighted least squares, then optimizes
only the error model using the degradation model parameters found, and then
minimizes the negative log-likelihood with free degradation and error model
parameters.
The algorithm "fourstep" starts with unweighted least squares, then optimizes
only the error model using the degradation model parameters found, then op-
timizes the degradation model again with fixed error model parameters, and
finally minimizes the negative log-likelihood with free degradation and error
model parameters.
The algorithm "IRLS" (Iteratively Reweighted Least Squares) starts with un-
weighted least squares, and then iterates optimization of the error model param-
eters and subsequent optimization of the degradation model using those error
model parameters, until the error model parameters converge.

reweight.tol Tolerance for the convergence criterion calculated from the error model param-
eters in IRLS fits.

60 mkinfit

reweight.max.iter

Maximum number of iterations in IRLS fits.

trace_parms Should a trace of the parameter values be listed?

test_residuals Should the residuals be tested for normal distribution?

... Further arguments that will be passed on to deSolve::ode().

Details

Per default, parameters in the kinetic models are internally transformed in order to better satisfy the
assumption of a normal distribution of their estimators.

Value

A list with "mkinfit" in the class attribute.

Note

When using the "IORE" submodel for metabolites, fitting with "transform_rates = TRUE" (the
default) often leads to failures of the numerical ODE solver. In this situation it may help to switch
off the internal rate transformation.

Author(s)

Johannes Ranke

References

Rocke DM and Lorenzato S (1995) A two-component model for measurement error in analytical
chemistry. Technometrics 37(2), 176-184.

Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical Degradation
Data. Environments 6(12) 124 doi:10.3390/environments6120124.

See Also

summary.mkinfit, plot.mkinfit, parms and lrtest.

Comparisons of models fitted to the same data can be made using AIC by virtue of the method
logLik.mkinfit.

Fitting of several models to several datasets in a single call to mmkin.

Examples

Use shorthand notation for parent only degradation
fit <- mkinfit("FOMC", FOCUS_2006_C, quiet = TRUE)
summary(fit)

One parent compound, one metabolite, both single first order.
We remove zero values from FOCUS dataset D in order to avoid warnings
FOCUS_D <- subset(FOCUS_2006_D, value != 0)
Use mkinsub for convenience in model formulation. Pathway to sink included per default.

https://doi.org/10.3390/environments6120124

mkinfit 61

SFO_SFO <- mkinmod(
parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))

Fit the model quietly to the FOCUS example dataset D using defaults
fit <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE)
plot_sep(fit)
As lower parent values appear to have lower variance, we try an alternative error model
fit.tc <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc")
This avoids the warning, and the likelihood ratio test confirms it is preferable
lrtest(fit.tc, fit)
We can also allow for different variances of parent and metabolite as error model
fit.obs <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "obs")
The two-component error model has significantly higher likelihood
lrtest(fit.obs, fit.tc)
parms(fit.tc)
endpoints(fit.tc)

We can show a quick (only one replication) benchmark for this case, as we
have several alternative solution methods for the model. We skip
uncompiled deSolve, as it is so slow. More benchmarks are found in the
benchmark vignette
Not run:
if(require(rbenchmark)) {
benchmark(replications = 1, order = "relative", columns = c("test", "relative", "elapsed"),

deSolve_compiled = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
solution_type = "deSolve", use_compiled = TRUE),

eigen = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
solution_type = "eigen"),

analytical = mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE, error_model = "tc",
solution_type = "analytical"))

}

End(Not run)

Use stepwise fitting, using optimised parameters from parent only fit, FOMC-SFO
Not run:
FOMC_SFO <- mkinmod(

parent = mkinsub("FOMC", "m1"),
m1 = mkinsub("SFO"))

fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE)
Again, we get a warning and try a more sophisticated error model
fit.FOMC_SFO.tc <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE, error_model = "tc")
This model has a higher likelihood, but not significantly so
lrtest(fit.tc, fit.FOMC_SFO.tc)
Also, the missing standard error for log_beta and the t-tests for alpha
and beta indicate overparameterisation
summary(fit.FOMC_SFO.tc, data = FALSE)

We can easily use starting parameters from the parent only fit (only for illustration)
fit.FOMC = mkinfit("FOMC", FOCUS_2006_D, quiet = TRUE, error_model = "tc")
fit.FOMC_SFO <- mkinfit(FOMC_SFO, FOCUS_D, quiet = TRUE,

parms.ini = fit.FOMC$bparms.ode, error_model = "tc")

62 mkinmod

End(Not run)

mkinmod Function to set up a kinetic model with one or more state variables

Description

This function is usually called using a call to mkinsub() for each observed variable, specifying the
corresponding submodel as well as outgoing pathways (see examples).

Print mkinmod objects in a way that the user finds his way to get to its components.

Usage

mkinmod(
...,
use_of_ff = "max",
name = NULL,
speclist = NULL,
quiet = FALSE,
verbose = FALSE,
dll_dir = NULL,
unload = FALSE,
overwrite = FALSE

)

S3 method for class 'mkinmod'
print(x, ...)

mkinsub(submodel, to = NULL, sink = TRUE, full_name = NA)

Arguments

... For each observed variable, a list as obtained by mkinsub() has to be speci-
fied as an argument (see examples). Currently, single first order kinetics "SFO",
indeterminate order rate equation kinetics "IORE", or single first order with re-
versible binding "SFORB" are implemented for all variables, while "FOMC",
"DFOP", "HS" and "logistic" can additionally be chosen for the first variable
which is assumed to be the source compartment. Additionally, mkinsub() has
an argument to, specifying names of variables to which a transfer is to be as-
sumed in the model. If the argument use_of_ff is set to "min" and the model for
the compartment is "SFO" or "SFORB", an additional mkinsub() argument can
be sink = FALSE, effectively fixing the flux to sink to zero. In print.mkinmod,
this argument is currently not used.

use_of_ff Specification of the use of formation fractions in the model equations and, if
applicable, the coefficient matrix. If "max", formation fractions are always used
(default). If "min", a minimum use of formation fractions is made, i.e. each
first-order pathway to a metabolite has its own rate constant.

mkinmod 63

name A name for the model. Should be a valid R object name.

speclist The specification of the observed variables and their submodel types and path-
ways can be given as a single list using this argument. Default is NULL.

quiet Should messages be suppressed?

verbose If TRUE, passed to inline::cfunction() if applicable to give detailed infor-
mation about the C function being built.

dll_dir Directory where an DLL object, if generated internally by inline::cfunction(),
should be saved. The DLL will only be stored in a permanent location for use in
future sessions, if ’dll_dir’ and ’name’ are specified. This is helpful if fit objects
are cached e.g. by knitr, as the cache remains functional across sessions if the
DLL is stored in a user defined location.

unload If a DLL from the target location in ’dll_dir’ is already loaded, should that be
unloaded first?

overwrite If a file exists at the target DLL location in ’dll_dir’, should this be overwritten?

x An mkinmod object.

submodel Character vector of length one to specify the submodel type. See mkinmod for
the list of allowed submodel names.

to Vector of the names of the state variable to which a transformation shall be
included in the model.

sink Should a pathway to sink be included in the model in addition to the pathways
to other state variables?

full_name An optional name to be used e.g. for plotting fits performed with the model. You
can use non-ASCII characters here, but then your R code will not be portable,
i.e. may produce unintended plot results on other operating systems or system
configurations.

Details

For the definition of model types and their parameters, the equations given in the FOCUS and
NAFTA guidance documents are used.

For kinetic models with more than one observed variable, a symbolic solution of the system of
differential equations is included in the resulting mkinmod object in some cases, speeding up the
solution.

If a C compiler is found by pkgbuild::has_compiler() and there is more than one observed
variable in the specification, C code is generated for evaluating the differential equations, compiled
using inline::cfunction() and added to the resulting mkinmod object.

Value

A list of class mkinmod for use with mkinfit(), containing, among others,

diffs A vector of string representations of differential equations, one for each mod-
elling variable.

map A list containing named character vectors for each observed variable, specifying
the modelling variables by which it is represented.

64 mkinmod

use_of_ff The content of use_of_ff is passed on in this list component.

deg_func If generated, a function containing the solution of the degradation model.

coefmat The coefficient matrix, if the system of differential equations can be represented
by one.

cf If generated, a compiled function calculating the derivatives as returned by
cfunction.

A list for use with mkinmod.

Note

The IORE submodel is not well tested for metabolites. When using this model for metabolites, you
may want to read the note in the help page to mkinfit.

Author(s)

Johannes Ranke

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

NAFTA Technical Working Group on Pesticides (not dated) Guidance for Evaluating and Calculat-
ing Degradation Kinetics in Environmental Media

Examples

Specify the SFO model (this is not needed any more, as we can now mkinfit("SFO", ...)
SFO <- mkinmod(parent = mkinsub("SFO"))

One parent compound, one metabolite, both single first order
SFO_SFO <- mkinmod(

parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"))

print(SFO_SFO)

Not run:
fit_sfo_sfo <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE, solution_type = "deSolve")

Now supplying compound names used for plotting, and write to user defined location
We need to choose a path outside the session tempdir because this gets removed
DLL_dir <- "~/.local/share/mkin"
if (!dir.exists(DLL_dir)) dir.create(DLL_dir)
SFO_SFO.2 <- mkinmod(
parent = mkinsub("SFO", "m1", full_name = "Test compound"),
m1 = mkinsub("SFO", full_name = "Metabolite M1"),
name = "SFO_SFO", dll_dir = DLL_dir, unload = TRUE, overwrite = TRUE)

Now we can save the model and restore it in a new session

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

mkinparplot 65

saveRDS(SFO_SFO.2, file = "~/SFO_SFO.rds")
Terminate the R session here if you would like to check, and then do
library(mkin)
SFO_SFO.3 <- readRDS("~/SFO_SFO.rds")
fit_sfo_sfo <- mkinfit(SFO_SFO.3, FOCUS_2006_D, quiet = TRUE, solution_type = "deSolve")

Show details of creating the C function
SFO_SFO <- mkinmod(

parent = mkinsub("SFO", "m1"),
m1 = mkinsub("SFO"), verbose = TRUE)

The symbolic solution which is available in this case is not
made for human reading but for speed of computation
SFO_SFO$deg_func

If we have several parallel metabolites
(compare tests/testthat/test_synthetic_data_for_UBA_2014.R)
m_synth_DFOP_par <- mkinmod(
parent = mkinsub("DFOP", c("M1", "M2")),
M1 = mkinsub("SFO"),
M2 = mkinsub("SFO"),
quiet = TRUE)

fit_DFOP_par_c <- mkinfit(m_synth_DFOP_par,
synthetic_data_for_UBA_2014[[12]]$data,
quiet = TRUE)

End(Not run)

mkinparplot Function to plot the confidence intervals obtained using mkinfit

Description

This function plots the confidence intervals for the parameters fitted using mkinfit.

Usage

mkinparplot(object)

Arguments

object A fit represented in an mkinfit object.

Value

Nothing is returned by this function, as it is called for its side effect, namely to produce a plot.

66 mkinplot

Author(s)

Johannes Ranke

Examples

Not run:
model <- mkinmod(

T245 = mkinsub("SFO", to = c("phenol"), sink = FALSE),
phenol = mkinsub("SFO", to = c("anisole")),
anisole = mkinsub("SFO"), use_of_ff = "max")

fit <- mkinfit(model, subset(mccall81_245T, soil == "Commerce"), quiet = TRUE)
mkinparplot(fit)

End(Not run)

mkinplot Plot the observed data and the fitted model of an mkinfit object

Description

Deprecated function. It now only calls the plot method plot.mkinfit.

Usage

mkinplot(fit, ...)

Arguments

fit an object of class mkinfit.

... further arguments passed to plot.mkinfit.

Value

The function is called for its side effect.

Author(s)

Johannes Ranke

mkinpredict 67

mkinpredict Produce predictions from a kinetic model using specific parameters

Description

This function produces a time series for all the observed variables in a kinetic model as specified by
mkinmod, using a specific set of kinetic parameters and initial values for the state variables.

Usage

mkinpredict(x, odeparms, odeini, outtimes, ...)

S3 method for class 'mkinmod'
mkinpredict(
x,
odeparms = c(k_parent_sink = 0.1),
odeini = c(parent = 100),
outtimes = seq(0, 120, by = 0.1),
solution_type = "deSolve",
use_compiled = "auto",
use_symbols = FALSE,
method.ode = "lsoda",
atol = 1e-08,
rtol = 1e-10,
maxsteps = 20000L,
map_output = TRUE,
na_stop = TRUE,
...

)

S3 method for class 'mkinfit'
mkinpredict(
x,
odeparms = x$bparms.ode,
odeini = x$bparms.state,
outtimes = seq(0, 120, by = 0.1),
solution_type = "deSolve",
use_compiled = "auto",
method.ode = "lsoda",
atol = 1e-08,
rtol = 1e-10,
map_output = TRUE,
...

)

68 mkinpredict

Arguments

x A kinetic model as produced by mkinmod, or a kinetic fit as fitted by mkinfit. In
the latter case, the fitted parameters are used for the prediction.

odeparms A numeric vector specifying the parameters used in the kinetic model, which is
generally defined as a set of ordinary differential equations.

odeini A numeric vector containing the initial values of the state variables of the model.
Note that the state variables can differ from the observed variables, for example
in the case of the SFORB model.

outtimes A numeric vector specifying the time points for which model predictions should
be generated.

... Further arguments passed to the ode solver in case such a solver is used.

solution_type The method that should be used for producing the predictions. This should
generally be "analytical" if there is only one observed variable, and usually "de-
Solve" in the case of several observed variables. The third possibility "eigen"
is fast in comparison to uncompiled ODE models, but not applicable to some
models, e.g. using FOMC for the parent compound.

use_compiled If set to FALSE, no compiled version of the mkinmod model is used, even if is
present.

use_symbols If set to TRUE (default), symbol info present in the mkinmod object is used if
available for accessing compiled code

method.ode The solution method passed via mkinpredict to ode] in case the solution type
is "deSolve" and we are not using compiled code. When using compiled code,
only lsoda is supported.

atol Absolute error tolerance, passed to the ode solver.

rtol Absolute error tolerance, passed to the ode solver.

maxsteps Maximum number of steps, passed to the ode solver.

map_output Boolean to specify if the output should list values for the observed variables
(default) or for all state variables (if set to FALSE). Setting this to FALSE has
no effect for analytical solutions, as these always return mapped output.

na_stop Should it be an error if ode returns NaN values

Value

A matrix with the numeric solution in wide format

Author(s)

Johannes Ranke

Examples

SFO <- mkinmod(degradinol = mkinsub("SFO"))
Compare solution types
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,

solution_type = "analytical")

mkinpredict 69

mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "deSolve")

mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "deSolve", use_compiled = FALSE)

mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,
solution_type = "eigen")

Compare integration methods to analytical solution
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,

solution_type = "analytical")[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,

method = "lsoda", use_compiled = FALSE)[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,

method = "ode45", use_compiled = FALSE)[21,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100), 0:20,

method = "rk4", use_compiled = FALSE)[21,]
rk4 is not as precise here

The number of output times used to make a lot of difference until the
default for atol was adjusted
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),

seq(0, 20, by = 0.1))[201,]
mkinpredict(SFO, c(k_degradinol = 0.3), c(degradinol = 100),

seq(0, 20, by = 0.01))[2001,]

Comparison of the performance of solution types
SFO_SFO = mkinmod(parent = list(type = "SFO", to = "m1"),

m1 = list(type = "SFO"), use_of_ff = "max")
if(require(rbenchmark)) {
benchmark(replications = 10, order = "relative", columns = c("test", "relative", "elapsed"),

eigen = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "eigen")[201,],

deSolve_compiled = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve")[201,],

deSolve = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "deSolve", use_compiled = FALSE)[201,],

analytical = mkinpredict(SFO_SFO,
c(k_parent = 0.15, f_parent_to_m1 = 0.5, k_m1 = 0.01),
c(parent = 100, m1 = 0), seq(0, 20, by = 0.1),
solution_type = "analytical", use_compiled = FALSE)[201,])

}

Not run:
Predict from a fitted model
f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE)
f <- mkinfit(SFO_SFO, FOCUS_2006_C, quiet = TRUE, solution_type = "deSolve")
head(mkinpredict(f))

70 mkinresplot

End(Not run)

mkinresplot Function to plot residuals stored in an mkin object

Description

This function plots the residuals for the specified subset of the observed variables from an mkinfit
object. A combined plot of the fitted model and the residuals can be obtained using plot.mkinfit
using the argument show_residuals = TRUE.

Usage

mkinresplot(
object,
obs_vars = names(object$mkinmod$map),
xlim = c(0, 1.1 * max(object$data$time)),
standardized = FALSE,
xlab = "Time",
ylab = ifelse(standardized, "Standardized residual", "Residual"),
maxabs = "auto",
legend = TRUE,
lpos = "topright",
col_obs = "auto",
pch_obs = "auto",
frame = TRUE,
...

)

Arguments

object A fit represented in an mkinfit object.

obs_vars A character vector of names of the observed variables for which residuals should
be plotted. Defaults to all observed variables in the model

xlim plot range in x direction.

standardized Should the residuals be standardized by dividing by the standard deviation given
by the error model of the fit?

xlab Label for the x axis.

ylab Label for the y axis.

maxabs Maximum absolute value of the residuals. This is used for the scaling of the y
axis and defaults to "auto".

legend Should a legend be plotted?

mkin_long_to_wide 71

lpos Where should the legend be placed? Default is "topright". Will be passed on to
legend.

col_obs Colors for the observed variables.

pch_obs Symbols to be used for the observed variables.

frame Should a frame be drawn around the plots?

... further arguments passed to plot.

Value

Nothing is returned by this function, as it is called for its side effect, namely to produce a plot.

Author(s)

Johannes Ranke and Katrin Lindenberger

See Also

mkinplot, for a way to plot the data and the fitted lines of the mkinfit object, and plot_res for a
function combining the plot of the fit and the residual plot.

Examples

model <- mkinmod(parent = mkinsub("SFO", "m1"), m1 = mkinsub("SFO"))
fit <- mkinfit(model, FOCUS_2006_D, quiet = TRUE)
mkinresplot(fit, "m1")

mkin_long_to_wide Convert a dataframe from long to wide format

Description

This function takes a dataframe in the long form, i.e. with a row for each observed value, and con-
verts it into a dataframe with one independent variable and several dependent variables as columns.

Usage

mkin_long_to_wide(long_data, time = "time", outtime = "time")

Arguments

long_data The dataframe must contain one variable called "time" with the time values spec-
ified by the time argument, one column called "name" with the grouping of the
observed values, and finally one column of observed values called "value".

time The name of the time variable in the long input data.

outtime The name of the time variable in the wide output data.

72 mkin_wide_to_long

Value

Dataframe in wide format.

Author(s)

Johannes Ranke

Examples

mkin_long_to_wide(FOCUS_2006_D)

mkin_wide_to_long Convert a dataframe with observations over time into long format

Description

This function simply takes a dataframe with one independent variable and several dependent vari-
able and converts it into the long form as required by mkinfit.

Usage

mkin_wide_to_long(wide_data, time = "t")

Arguments

wide_data The dataframe must contain one variable with the time values specified by the
time argument and usually more than one column of observed values.

time The name of the time variable.

Value

Dataframe in long format as needed for mkinfit.

Author(s)

Johannes Ranke

Examples

wide <- data.frame(t = c(1,2,3), x = c(1,4,7), y = c(3,4,5))
mkin_wide_to_long(wide)

mmkin 73

mmkin Fit one or more kinetic models with one or more state variables to one
or more datasets

Description

This function calls mkinfit on all combinations of models and datasets specified in its first two
arguments.

Usage

mmkin(
models = c("SFO", "FOMC", "DFOP"),
datasets,
cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL,
...

)

S3 method for class 'mmkin'
print(x, ...)

Arguments

models Either a character vector of shorthand names like c("SFO", "FOMC", "DFOP",
"HS", "SFORB"), or an optionally named list of mkinmod objects.

datasets An optionally named list of datasets suitable as observed data for mkinfit.

cores The number of cores to be used for multicore processing. This is only used
when the cluster argument is NULL. On Windows machines, cores > 1 is not
supported, you need to use the cluster argument to use multiple logical pro-
cessors. Per default, all cores detected by parallel::detectCores() are used,
except on Windows where the default is 1.

cluster A cluster as returned by makeCluster to be used for parallel execution.

... Not used.

x An mmkin object.

Value

A two-dimensional array of mkinfit objects and/or try-errors that can be indexed using the model
names for the first index (row index) and the dataset names for the second index (column index).

Author(s)

Johannes Ranke

74 mmkin

See Also

[.mmkin for subsetting, plot.mmkin for plotting.

Examples

Not run:
m_synth_SFO_lin <- mkinmod(parent = mkinsub("SFO", "M1"),

M1 = mkinsub("SFO", "M2"),
M2 = mkinsub("SFO"), use_of_ff = "max")

m_synth_FOMC_lin <- mkinmod(parent = mkinsub("FOMC", "M1"),
M1 = mkinsub("SFO", "M2"),
M2 = mkinsub("SFO"), use_of_ff = "max")

models <- list(SFO_lin = m_synth_SFO_lin, FOMC_lin = m_synth_FOMC_lin)
datasets <- lapply(synthetic_data_for_UBA_2014[1:3], function(x) x$data)
names(datasets) <- paste("Dataset", 1:3)

time_default <- system.time(fits.0 <- mmkin(models, datasets, quiet = TRUE))
time_1 <- system.time(fits.4 <- mmkin(models, datasets, cores = 1, quiet = TRUE))

time_default
time_1

endpoints(fits.0[["SFO_lin", 2]])

plot.mkinfit handles rows or columns of mmkin result objects
plot(fits.0[1,])
plot(fits.0[1,], obs_var = c("M1", "M2"))
plot(fits.0[, 1])
Use double brackets to extract a single mkinfit object, which will be plotted
by plot.mkinfit and can be plotted using plot_sep
plot(fits.0[[1, 1]], sep_obs = TRUE, show_residuals = TRUE, show_errmin = TRUE)
plot_sep(fits.0[[1, 1]])
Plotting with mmkin (single brackets, extracting an mmkin object) does not
allow to plot the observed variables separately
plot(fits.0[1, 1])

On Windows, we can use multiple cores by making a cluster first
cl <- parallel::makePSOCKcluster(12)
f <- mmkin(c("SFO", "FOMC", "DFOP"),

list(A = FOCUS_2006_A, B = FOCUS_2006_B, C = FOCUS_2006_C, D = FOCUS_2006_D),
cluster = cl, quiet = TRUE)

print(f)
We get false convergence for the FOMC fit to FOCUS_2006_A because this
dataset is really SFO, and the FOMC fit is overparameterised
parallel::stopCluster(cl)

End(Not run)

multistart 75

multistart Perform a hierarchical model fit with multiple starting values

Description

The purpose of this method is to check if a certain algorithm for fitting nonlinear hierarchical mod-
els (also known as nonlinear mixed-effects models) will reliably yield results that are sufficiently
similar to each other, if started with a certain range of reasonable starting parameters. It is inspired
by the article on practical identifiabiliy in the frame of nonlinear mixed-effects models by Duchesne
et al (2021).

Usage

multistart(
object,
n = 50,
cores = if (Sys.info()["sysname"] == "Windows") 1 else parallel::detectCores(),
cluster = NULL,
...

)

S3 method for class 'saem.mmkin'
multistart(object, n = 50, cores = 1, cluster = NULL, ...)

S3 method for class 'multistart'
print(x, ...)

best(object, ...)

Default S3 method:
best(object, ...)

which.best(object, ...)

Default S3 method:
which.best(object, ...)

Arguments

object The fit object to work with

n How many different combinations of starting parameters should be used?

cores How many fits should be run in parallel (only on posix platforms)?

cluster A cluster as returned by parallel::makeCluster to be used for parallel execution.

... Passed to the update function.

x The multistart object to print

76 multistart

Value

A list of saem.mmkin objects, with class attributes ’multistart.saem.mmkin’ and ’multistart’.

The object with the highest likelihood

The index of the object with the highest likelihood

References

Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical identifiability in the frame of nonlinear
mixed effects models: the example of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct
4;22(1):478. doi: 10.1186/s12859-021-04373-4.

See Also

parplot, llhist

Examples

Not run:
library(mkin)
dmta_ds <- lapply(1:7, function(i) {

ds_i <- dimethenamid_2018$ds[[i]]$data
ds_i[ds_i$name == "DMTAP", "name"] <- "DMTA"
ds_i$time <- ds_i$time * dimethenamid_2018$f_time_norm[i]
ds_i

})
names(dmta_ds) <- sapply(dimethenamid_2018$ds, function(ds) ds$title)
dmta_ds[["Elliot"]] <- rbind(dmta_ds[["Elliot 1"]], dmta_ds[["Elliot 2"]])
dmta_ds[["Elliot 1"]] <- dmta_ds[["Elliot 2"]] <- NULL

f_mmkin <- mmkin("DFOP", dmta_ds, error_model = "tc", cores = 7, quiet = TRUE)
f_saem_full <- saem(f_mmkin)
f_saem_full_multi <- multistart(f_saem_full, n = 16, cores = 16)
parplot(f_saem_full_multi, lpos = "topleft")
illparms(f_saem_full)

f_saem_reduced <- update(f_saem_full, no_random_effect = "log_k2")
illparms(f_saem_reduced)
On Windows, we need to create a PSOCK cluster first and refer to it
in the call to multistart()
library(parallel)
cl <- makePSOCKcluster(12)
f_saem_reduced_multi <- multistart(f_saem_reduced, n = 16, cluster = cl)
parplot(f_saem_reduced_multi, lpos = "topright", ylim = c(0.5, 2))
stopCluster(cl)

End(Not run)

nafta 77

nafta Evaluate parent kinetics using the NAFTA guidance

Description

The function fits the SFO, IORE and DFOP models using mmkin and returns an object of class
nafta that has methods for printing and plotting.

Print nafta objects. The results for the three models are printed in the order of increasing model
complexity, i.e. SFO, then IORE, and finally DFOP.

Usage

nafta(ds, title = NA, quiet = FALSE, ...)

S3 method for class 'nafta'
print(x, quiet = TRUE, digits = 3, ...)

Arguments

ds A dataframe that must contain one variable called "time" with the time values
specified by the time argument, one column called "name" with the grouping of
the observed values, and finally one column of observed values called "value".

title Optional title of the dataset

quiet Should the evaluation text be shown?

... Further arguments passed to mmkin (not for the printing method).

x An nafta object.

digits Number of digits to be used for printing parameters and dissipation times.

Value

An list of class nafta. The list element named "mmkin" is the mmkin object containing the fits
of the three models. The list element named "title" contains the title of the dataset used. The list
element "data" contains the dataset used in the fits.

Author(s)

Johannes Ranke

Source

NAFTA (2011) Guidance for evaluating and calculating degradation kinetics in environmental me-
dia. NAFTA Technical Working Group on Pesticides https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
guidance-evaluating-and-calculating-degradation accessed 2019-02-22

US EPA (2015) Standard Operating Procedure for Using the NAFTA Guidance to Calculate Repre-
sentative Half-life Values and Characterizing Pesticide Degradation https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
standard-operating-procedure-using-nafta-guidance

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance

78 NAFTA_SOP_2015

Examples

nafta_evaluation <- nafta(NAFTA_SOP_Appendix_D, cores = 1)
print(nafta_evaluation)
plot(nafta_evaluation)

NAFTA_SOP_2015 Example datasets from the NAFTA SOP published 2015

Description

Data taken from US EPA (2015), p. 19 and 23.

Usage

NAFTA_SOP_Appendix_B
NAFTA_SOP_Appendix_D

Format

2 datasets with observations on the following variables.

name a factor containing the name of the observed variable

time a numeric vector containing time points

value a numeric vector containing concentrations

Source

NAFTA (2011) Guidance for evaluating and calculating degradation kinetics in environmental me-
dia. NAFTA Technical Working Group on Pesticides https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
guidance-evaluating-and-calculating-degradation accessed 2019-02-22

US EPA (2015) Standard Operating Procedure for Using the NAFTA Guidance to Calculate Repre-
sentative Half-life Values and Characterizing Pesticide Degradation https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
standard-operating-procedure-using-nafta-guidance

Examples

nafta_evaluation <- nafta(NAFTA_SOP_Appendix_D, cores = 1)
print(nafta_evaluation)
plot(nafta_evaluation)

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance

NAFTA_SOP_Attachment 79

NAFTA_SOP_Attachment Example datasets from Attachment 1 to the NAFTA SOP published
2015

Description

Data taken from from Attachment 1 of the SOP.

Usage

NAFTA_SOP_Attachment

Format

A list (NAFTA_SOP_Attachment) containing 16 datasets suitable for the evaluation with nafta

Source

NAFTA (2011) Guidance for evaluating and calculating degradation kinetics in environmental me-
dia. NAFTA Technical Working Group on Pesticides https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
guidance-evaluating-and-calculating-degradation accessed 2019-02-22

US EPA (2015) Standard Operating Procedure for Using the NAFTA Guidance to Calculate Repre-
sentative Half-life Values and Characterizing Pesticide Degradation https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/
standard-operating-procedure-using-nafta-guidance

Examples

nafta_att_p5a <- nafta(NAFTA_SOP_Attachment[["p5a"]], cores = 1)
print(nafta_att_p5a)
plot(nafta_att_p5a)

nlme.mmkin Create an nlme model for an mmkin row object

Description

This functions sets up a nonlinear mixed effects model for an mmkin row object. An mmkin row
object is essentially a list of mkinfit objects that have been obtained by fitting the same model to a
list of datasets.

https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-evaluating-and-calculating-degradation
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance
https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/standard-operating-procedure-using-nafta-guidance

80 nlme.mmkin

Usage

S3 method for class 'mmkin'
nlme(
model,
data = "auto",
fixed = lapply(as.list(names(mean_degparms(model))), function(el) eval(parse(text =

paste(el, 1, sep = "~")))),
random = pdDiag(fixed),
groups,
start = mean_degparms(model, random = TRUE, test_log_parms = TRUE),
correlation = NULL,
weights = NULL,
subset,
method = c("ML", "REML"),
na.action = na.fail,
naPattern,
control = list(),
verbose = FALSE

)

S3 method for class 'nlme.mmkin'
print(x, digits = max(3, getOption("digits") - 3), ...)

S3 method for class 'nlme.mmkin'
update(object, ...)

Arguments

model An mmkin row object.

data Ignored, data are taken from the mmkin model

fixed Ignored, all degradation parameters fitted in the mmkin model are used as fixed
parameters

random If not specified, no correlations between random effects are set up for the opti-
mised degradation model parameters. This is achieved by using the nlme::pdDiag
method.

groups See the documentation of nlme

start If not specified, mean values of the fitted degradation parameters taken from the
mmkin object are used

correlation See the documentation of nlme

weights passed to nlme

subset passed to nlme

method passed to nlme

na.action passed to nlme

naPattern passed to nlme

control passed to nlme

nlme.mmkin 81

verbose passed to nlme

x An nlme.mmkin object to print

digits Number of digits to use for printing

... Update specifications passed to update.nlme

object An nlme.mmkin object to update

Details

Note that the convergence of the nlme algorithms depends on the quality of the data. In degradation
kinetics, we often only have few datasets (e.g. data for few soils) and complicated degradation
models, which may make it impossible to obtain convergence with nlme.

Value

Upon success, a fitted ’nlme.mmkin’ object, which is an nlme object with additional elements. It
also inherits from ’mixed.mmkin’.

Note

As the object inherits from nlme::nlme, there is a wealth of methods that will automatically work on
’nlme.mmkin’ objects, such as nlme::intervals(), nlme::anova.lme() and nlme::coef.lme().

See Also

nlme_function(), plot.mixed.mmkin, summary.nlme.mmkin

Examples

ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")], name == "parent"))

Not run:
f <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, cores = 1)
library(nlme)
f_nlme_sfo <- nlme(f["SFO",])
f_nlme_dfop <- nlme(f["DFOP",])
anova(f_nlme_sfo, f_nlme_dfop)
print(f_nlme_dfop)
plot(f_nlme_dfop)
endpoints(f_nlme_dfop)

ds_2 <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) x$data[c("name", "time", "value")])
m_sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),

A1 = mkinsub("SFO"), use_of_ff = "min", quiet = TRUE)
m_sfo_sfo_ff <- mkinmod(parent = mkinsub("SFO", "A1"),

A1 = mkinsub("SFO"), use_of_ff = "max", quiet = TRUE)
m_dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),

A1 = mkinsub("SFO"), quiet = TRUE)

82 nlme.mmkin

f_2 <- mmkin(list("SFO-SFO" = m_sfo_sfo,
"SFO-SFO-ff" = m_sfo_sfo_ff,
"DFOP-SFO" = m_dfop_sfo),
ds_2, quiet = TRUE)

f_nlme_sfo_sfo <- nlme(f_2["SFO-SFO",])
plot(f_nlme_sfo_sfo)

With formation fractions this does not coverge with defaults
f_nlme_sfo_sfo_ff <- nlme(f_2["SFO-SFO-ff",])
#plot(f_nlme_sfo_sfo_ff)

For the following, we need to increase pnlsMaxIter and the tolerance
to get convergence
f_nlme_dfop_sfo <- nlme(f_2["DFOP-SFO",],

control = list(pnlsMaxIter = 120, tolerance = 5e-4))

plot(f_nlme_dfop_sfo)

anova(f_nlme_dfop_sfo, f_nlme_sfo_sfo)

endpoints(f_nlme_sfo_sfo)
endpoints(f_nlme_dfop_sfo)

if (length(findFunction("varConstProp")) > 0) { # tc error model for nlme available
Attempts to fit metabolite kinetics with the tc error model are possible,
but need tweeking of control values and sometimes do not converge

f_tc <- mmkin(c("SFO", "DFOP"), ds, quiet = TRUE, error_model = "tc")
f_nlme_sfo_tc <- nlme(f_tc["SFO",])
f_nlme_dfop_tc <- nlme(f_tc["DFOP",])
AIC(f_nlme_sfo, f_nlme_sfo_tc, f_nlme_dfop, f_nlme_dfop_tc)
print(f_nlme_dfop_tc)

}

f_2_obs <- update(f_2, error_model = "obs")
f_nlme_sfo_sfo_obs <- nlme(f_2_obs["SFO-SFO",])
print(f_nlme_sfo_sfo_obs)
f_nlme_dfop_sfo_obs <- nlme(f_2_obs["DFOP-SFO",],

control = list(pnlsMaxIter = 120, tolerance = 5e-4))

f_2_tc <- update(f_2, error_model = "tc")
f_nlme_sfo_sfo_tc <- nlme(f_2_tc["SFO-SFO",]) # No convergence with 50 iterations
f_nlme_dfop_sfo_tc <- nlme(f_2_tc["DFOP-SFO",],
control = list(pnlsMaxIter = 120, tolerance = 5e-4)) # Error in X[, fmap[[nm]]] <- gradnm

anova(f_nlme_dfop_sfo, f_nlme_dfop_sfo_obs)

End(Not run)

nlme_function 83

nlme_function Helper functions to create nlme models from mmkin row objects

Description

These functions facilitate setting up a nonlinear mixed effects model for an mmkin row object. An
mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the same
model to a list of datasets. They are used internally by the nlme.mmkin() method.

Usage

nlme_function(object)

nlme_data(object)

Arguments

object An mmkin row object containing several fits of the same model to different
datasets

Value

A function that can be used with nlme

A groupedData object

See Also

nlme.mmkin

Examples

sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
m_SFO <- mkinmod(parent = mkinsub("SFO"))
d_SFO_1 <- mkinpredict(m_SFO,

c(k_parent = 0.1),
c(parent = 98), sampling_times)

d_SFO_1_long <- mkin_wide_to_long(d_SFO_1, time = "time")
d_SFO_2 <- mkinpredict(m_SFO,

c(k_parent = 0.05),
c(parent = 102), sampling_times)

d_SFO_2_long <- mkin_wide_to_long(d_SFO_2, time = "time")
d_SFO_3 <- mkinpredict(m_SFO,

c(k_parent = 0.02),
c(parent = 103), sampling_times)

d_SFO_3_long <- mkin_wide_to_long(d_SFO_3, time = "time")

d1 <- add_err(d_SFO_1, function(value) 3, n = 1)
d2 <- add_err(d_SFO_2, function(value) 2, n = 1)
d3 <- add_err(d_SFO_3, function(value) 4, n = 1)

84 nobs.mkinfit

ds <- c(d1 = d1, d2 = d2, d3 = d3)

f <- mmkin("SFO", ds, cores = 1, quiet = TRUE)
mean_dp <- mean_degparms(f)
grouped_data <- nlme_data(f)
nlme_f <- nlme_function(f)
These assignments are necessary for these objects to be
visible to nlme and augPred when evaluation is done by
pkgdown to generate the html docs.
assign("nlme_f", nlme_f, globalenv())
assign("grouped_data", grouped_data, globalenv())

library(nlme)
m_nlme <- nlme(value ~ nlme_f(name, time, parent_0, log_k_parent_sink),

data = grouped_data,
fixed = parent_0 + log_k_parent_sink ~ 1,
random = pdDiag(parent_0 + log_k_parent_sink ~ 1),
start = mean_dp)

summary(m_nlme)
plot(augPred(m_nlme, level = 0:1), layout = c(3, 1))
augPred does not work on fits with more than one state
variable
#
The procedure is greatly simplified by the nlme.mmkin function
f_nlme <- nlme(f)
plot(f_nlme)

nobs.mkinfit Number of observations on which an mkinfit object was fitted

Description

Number of observations on which an mkinfit object was fitted

Usage

S3 method for class 'mkinfit'
nobs(object, ...)

Arguments

object An mkinfit object

... For compatibility with the generic method

Value

The number of rows in the data included in the mkinfit object

parms 85

parms Extract model parameters

Description

This function returns degradation model parameters as well as error model parameters per default, in
order to avoid working with a fitted model without considering the error structure that was assumed
for the fit.

Usage

parms(object, ...)

S3 method for class 'mkinfit'
parms(object, transformed = FALSE, errparms = TRUE, ...)

S3 method for class 'mmkin'
parms(object, transformed = FALSE, errparms = TRUE, ...)

S3 method for class 'multistart'
parms(object, exclude_failed = TRUE, ...)

S3 method for class 'saem.mmkin'
parms(object, ci = FALSE, covariates = NULL, ...)

Arguments

object A fitted model object.

... Not used

transformed Should the parameters be returned as used internally during the optimisation?

errparms Should the error model parameters be returned in addition to the degradation
parameters?

exclude_failed For multistart objects, should rows for failed fits be removed from the returned
parameter matrix?

ci Should a matrix with estimates and confidence interval boundaries be returned?
If FALSE (default), a vector of estimates is returned if no covariates are given,
otherwise a matrix of estimates is returned, with each column corresponding to
a row of the data frame holding the covariates

covariates A data frame holding covariate values for which to return parameter values.
Only has an effect if ’ci’ is FALSE.

Value

Depending on the object, a numeric vector of fitted model parameters, a matrix (e.g. for mmkin row
objects), or a list of matrices (e.g. for mmkin objects with more than one row).

86 parplot

See Also

saem, multistart

Examples

mkinfit objects
fit <- mkinfit("SFO", FOCUS_2006_C, quiet = TRUE)
parms(fit)
parms(fit, transformed = TRUE)

mmkin objects
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))

names(ds) <- paste("Dataset", 6:10)
Not run:
fits <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE, cores = 1)
parms(fits["SFO",])
parms(fits[, 2])
parms(fits)
parms(fits, transformed = TRUE)

End(Not run)

parplot Plot parameter variability of multistart objects

Description

Produces a boxplot with all parameters from the multiple runs, scaled either by the parameters of
the run with the highest likelihood, or by their medians as proposed in the paper by Duchesne et al.
(2021).

Usage

parplot(object, ...)

S3 method for class 'multistart.saem.mmkin'
parplot(
object,
llmin = -Inf,
llquant = NA,
scale = c("best", "median"),
lpos = "bottomleft",
main = "",
...

)

plot.mixed.mmkin 87

Arguments

object The multistart object

... Passed to boxplot

llmin The minimum likelihood of objects to be shown

llquant Fractional value for selecting only the fits with higher likelihoods. Overrides
’llmin’.

scale By default, scale parameters using the best available fit. If ’median’, parameters
are scaled using the median parameters from all fits.

lpos Positioning of the legend.

main Title of the plot

Details

Starting values of degradation model parameters and error model parameters are shown as green
circles. The results obtained in the original run are shown as red circles.

References

Duchesne R, Guillemin A, Gandrillon O, Crauste F. Practical identifiability in the frame of nonlinear
mixed effects models: the example of the in vitro erythropoiesis. BMC Bioinformatics. 2021 Oct
4;22(1):478. doi: 10.1186/s12859-021-04373-4.

See Also

multistart

plot.mixed.mmkin Plot predictions from a fitted nonlinear mixed model obtained via an
mmkin row object

Description

Plot predictions from a fitted nonlinear mixed model obtained via an mmkin row object

Usage

S3 method for class 'mixed.mmkin'
plot(
x,
i = 1:ncol(x$mmkin),
obs_vars = names(x$mkinmod$map),
standardized = TRUE,
covariates = NULL,
covariate_quantiles = c(0.5, 0.05, 0.95),
xlab = "Time",

88 plot.mixed.mmkin

xlim = range(x$data$time),
resplot = c("predicted", "time"),
pop_curves = "auto",
pred_over = NULL,
test_log_parms = FALSE,
conf.level = 0.6,
default_log_parms = NA,
ymax = "auto",
maxabs = "auto",
ncol.legend = ifelse(length(i) <= 3, length(i) + 1, ifelse(length(i) <= 8, 3, 4)),
nrow.legend = ceiling((length(i) + 1)/ncol.legend),
rel.height.legend = 0.02 + 0.07 * nrow.legend,
rel.height.bottom = 1.1,
pch_ds = 1:length(i),
col_ds = pch_ds + 1,
lty_ds = col_ds,
frame = TRUE,
...

)

Arguments

x An object of class mixed.mmkin, saem.mmkin or nlme.mmkin

i A numeric index to select datasets for which to plot the individual predictions,
in case plots get too large

obs_vars A character vector of names of the observed variables for which the data and the
model should be plotted. Defauls to all observed variables in the model.

standardized Should the residuals be standardized? Only takes effect if resplot = "time".

covariates Data frame with covariate values for all variables in any covariate models in the
object. If given, it overrides ’covariate_quantiles’. Each line in the data frame
will result in a line drawn for the population. Rownames are used in the legend
to label the lines.

covariate_quantiles

This argument only has an effect if the fitted object has covariate models. If
so, the default is to show three population curves, for the 5th percentile, the
50th percentile and the 95th percentile of the covariate values used for fitting the
model.

xlab Label for the x axis.

xlim Plot range in x direction.

resplot Should the residuals plotted against time or against predicted values?

pop_curves Per default, one population curve is drawn in case population parameters are
fitted by the model, e.g. for saem objects. In case there is a covariate model, the
behaviour depends on the value of ’covariates’

pred_over Named list of alternative predictions as obtained from mkinpredict with a com-
patible mkinmod.

test_log_parms Passed to mean_degparms in the case of an mixed.mmkin object

plot.mixed.mmkin 89

conf.level Passed to mean_degparms in the case of an mixed.mmkin object
default_log_parms

Passed to mean_degparms in the case of an mixed.mmkin object

ymax Vector of maximum y axis values

maxabs Maximum absolute value of the residuals. This is used for the scaling of the y
axis and defaults to "auto".

ncol.legend Number of columns to use in the legend

nrow.legend Number of rows to use in the legend
rel.height.legend

The relative height of the legend shown on top
rel.height.bottom

The relative height of the bottom plot row

pch_ds Symbols to be used for plotting the data.

col_ds Colors used for plotting the observed data and the corresponding model predic-
tion lines for the different datasets.

lty_ds Line types to be used for the model predictions.

frame Should a frame be drawn around the plots?

... Further arguments passed to plot.

Value

The function is called for its side effect.

Note

Covariate models are currently only supported for saem.mmkin objects.

Author(s)

Johannes Ranke

Examples

ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) x$data[c("name", "time", "value")])

names(ds) <- paste0("ds ", 6:10)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),

A1 = mkinsub("SFO"), quiet = TRUE)
Not run:
f <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE)
plot(f[, 3:4], standardized = TRUE)

For this fit we need to increase pnlsMaxiter, and we increase the
tolerance in order to speed up the fit for this example evaluation
It still takes 20 seconds to run
f_nlme <- nlme(f, control = list(pnlsMaxIter = 120, tolerance = 1e-3))
plot(f_nlme)

90 plot.mkinfit

f_saem <- saem(f, transformations = "saemix")
plot(f_saem)

f_obs <- mmkin(list("DFOP-SFO" = dfop_sfo), ds, quiet = TRUE, error_model = "obs")
f_nlmix <- nlmix(f_obs)
plot(f_nlmix)

We can overlay the two variants if we generate predictions
pred_nlme <- mkinpredict(dfop_sfo,

f_nlme$bparms.optim[-1],
c(parent = f_nlme$bparms.optim[[1]], A1 = 0),
seq(0, 180, by = 0.2))

plot(f_saem, pred_over = list(nlme = pred_nlme))

End(Not run)

plot.mkinfit Plot the observed data and the fitted model of an mkinfit object

Description

Solves the differential equations with the optimised and fixed parameters from a previous successful
call to mkinfit and plots the observed data together with the solution of the fitted model.

Usage

S3 method for class 'mkinfit'
plot(
x,
fit = x,
obs_vars = names(fit$mkinmod$map),
xlab = "Time",
ylab = "Residue",
xlim = range(fit$data$time),
ylim = "default",
col_obs = 1:length(obs_vars),
pch_obs = col_obs,
lty_obs = rep(1, length(obs_vars)),
add = FALSE,
legend = !add,
show_residuals = FALSE,
show_errplot = FALSE,
maxabs = "auto",
sep_obs = FALSE,
rel.height.middle = 0.9,
row_layout = FALSE,
lpos = "topright",

plot.mkinfit 91

inset = c(0.05, 0.05),
show_errmin = FALSE,
errmin_digits = 3,
frame = TRUE,
...

)

plot_sep(
fit,
show_errmin = TRUE,
show_residuals = ifelse(identical(fit$err_mod, "const"), TRUE, "standardized"),
...

)

plot_res(
fit,
sep_obs = FALSE,
show_errmin = sep_obs,
standardized = ifelse(identical(fit$err_mod, "const"), FALSE, TRUE),
...

)

plot_err(fit, sep_obs = FALSE, show_errmin = sep_obs, ...)

Arguments

x Alias for fit introduced for compatibility with the generic S3 method.

fit An object of class mkinfit.

obs_vars A character vector of names of the observed variables for which the data and the
model should be plotted. Defauls to all observed variables in the model.

xlab Label for the x axis.

ylab Label for the y axis.

xlim Plot range in x direction.

ylim Plot range in y direction. If given as a list, plot ranges for the different plot rows
can be given for row layout.

col_obs Colors used for plotting the observed data and the corresponding model predic-
tion lines.

pch_obs Symbols to be used for plotting the data.

lty_obs Line types to be used for the model predictions.

add Should the plot be added to an existing plot?

legend Should a legend be added to the plot?

show_residuals Should residuals be shown? If only one plot of the fits is shown, the residual
plot is in the lower third of the plot. Otherwise, i.e. if "sep_obs" is given, the
residual plots will be located to the right of the plots of the fitted curves. If this
is set to ’standardized’, a plot of the residuals divided by the standard deviation
given by the fitted error model will be shown.

92 plot.mkinfit

show_errplot Should squared residuals and the error model be shown? If only one plot of
the fits is shown, this plot is in the lower third of the plot. Otherwise, i.e. if
"sep_obs" is given, the residual plots will be located to the right of the plots of
the fitted curves.

maxabs Maximum absolute value of the residuals. This is used for the scaling of the y
axis and defaults to "auto".

sep_obs Should the observed variables be shown in separate subplots? If yes, residual
plots requested by "show_residuals" will be shown next to, not below the plot of
the fits.

rel.height.middle

The relative height of the middle plot, if more than two rows of plots are shown.

row_layout Should we use a row layout where the residual plot or the error model plot is
shown to the right?

lpos Position(s) of the legend(s). Passed to legend as the first argument. If not length
one, this should be of the same length as the obs_var argument.

inset Passed to legend if applicable.

show_errmin Should the FOCUS chi2 error value be shown in the upper margin of the plot?

errmin_digits The number of significant digits for rounding the FOCUS chi2 error percentage.

frame Should a frame be drawn around the plots?

... Further arguments passed to plot.

standardized When calling ’plot_res’, should the residuals be standardized in the residual
plot?

Details

If the current plot device is a tikz device, then latex is being used for the formatting of the chi2
error level, if show_errmin = TRUE.

Value

The function is called for its side effect.

Author(s)

Johannes Ranke

Examples

One parent compound, one metabolite, both single first order, path from
parent to sink included
Not run:
SFO_SFO <- mkinmod(parent = mkinsub("SFO", "m1", full = "Parent"),

m1 = mkinsub("SFO", full = "Metabolite M1"))
fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE)
fit <- mkinfit(SFO_SFO, FOCUS_2006_D, quiet = TRUE, error_model = "tc")
plot(fit)
plot_res(fit)

plot.mmkin 93

plot_res(fit, standardized = FALSE)
plot_err(fit)

Show the observed variables separately, with residuals
plot(fit, sep_obs = TRUE, show_residuals = TRUE, lpos = c("topright", "bottomright"),

show_errmin = TRUE)

The same can be obtained with less typing, using the convenience function plot_sep
plot_sep(fit, lpos = c("topright", "bottomright"))

Show the observed variables separately, with the error model
plot(fit, sep_obs = TRUE, show_errplot = TRUE, lpos = c("topright", "bottomright"),

show_errmin = TRUE)

End(Not run)

plot.mmkin Plot model fits (observed and fitted) and the residuals for a row or
column of an mmkin object

Description

When x is a row selected from an mmkin object ([.mmkin), the same model fitted for at least one
dataset is shown. When it is a column, the fit of at least one model to the same dataset is shown.

Usage

S3 method for class 'mmkin'
plot(
x,
main = "auto",
legends = 1,
resplot = c("time", "errmod"),
ylab = "Residue",
standardized = FALSE,
show_errmin = TRUE,
errmin_var = "All data",
errmin_digits = 3,
cex = 0.7,
rel.height.middle = 0.9,
ymax = "auto",
...

)

Arguments

x An object of class mmkin, with either one row or one column.

94 plot.mmkin

main The main title placed on the outer margin of the plot.

legends An index for the fits for which legends should be shown.

resplot Should the residuals plotted against time, using mkinresplot, or as squared
residuals against predicted values, with the error model, using mkinerrplot.

ylab Label for the y axis.

standardized Should the residuals be standardized? This option is passed to mkinresplot, it
only takes effect if resplot = "time".

show_errmin Should the chi2 error level be shown on top of the plots to the left?

errmin_var The variable for which the FOCUS chi2 error value should be shown.

errmin_digits The number of significant digits for rounding the FOCUS chi2 error percentage.

cex Passed to the plot functions and mtext.
rel.height.middle

The relative height of the middle plot, if more than two rows of plots are shown.

ymax Maximum y axis value for plot.mkinfit.

... Further arguments passed to plot.mkinfit and mkinresplot.

Details

If the current plot device is a tikz device, then latex is being used for the formatting of the chi2
error level.

Value

The function is called for its side effect.

Author(s)

Johannes Ranke

Examples

Not run:
Only use one core not to offend CRAN checks
fits <- mmkin(c("FOMC", "HS"),

list("FOCUS B" = FOCUS_2006_B, "FOCUS C" = FOCUS_2006_C), # named list for titles
cores = 1, quiet = TRUE, error_model = "tc")

plot(fits[, "FOCUS C"])
plot(fits["FOMC",])
plot(fits["FOMC",], show_errmin = FALSE)

We can also plot a single fit, if we like the way plot.mmkin works, but then the plot
height should be smaller than the plot width (this is not possible for the html pages
generated by pkgdown, as far as I know).
plot(fits["FOMC", "FOCUS C"]) # same as plot(fits[1, 2])

Show the error models
plot(fits["FOMC",], resplot = "errmod")

plot.nafta 95

End(Not run)

plot.nafta Plot the results of the three models used in the NAFTA scheme.

Description

The plots are ordered with increasing complexity of the model in this function (SFO, then IORE,
then DFOP).

Usage

S3 method for class 'nafta'
plot(x, legend = FALSE, main = "auto", ...)

Arguments

x An object of class nafta.

legend Should a legend be added?

main Possibility to override the main title of the plot.

... Further arguments passed to plot.mmkin.

Details

Calls plot.mmkin.

Value

The function is called for its side effect.

Author(s)

Johannes Ranke

96 read_spreadsheet

read_spreadsheet Read datasets and relevant meta information from a spreadsheet file

Description

This function imports one dataset from each sheet of a spreadsheet file. These sheets are selected
based on the contents of a sheet ’Datasets’, with a column called ’Dataset Number’, containing
numbers identifying the dataset sheets to be read in. In the second column there must be a grouping
variable, which will often be named ’Soil’. Optionally, time normalization factors can be given in
columns named ’Temperature’ and ’Moisture’.

Usage

read_spreadsheet(
path,
valid_datasets = "all",
parent_only = FALSE,
normalize = TRUE

)

Arguments

path Absolute or relative path to the spreadsheet file

valid_datasets Optional numeric index of the valid datasets, default is to use all datasets

parent_only Should only the parent data be used?

normalize Should the time scale be normalized using temperature and moisture normalisa-
tion factors in the sheet ’Datasets’?

Details

There must be a sheet ’Compounds’, with columns ’Name’ and ’Acronym’. The first row read after
the header read in from this sheet is assumed to contain name and acronym of the parent compound.

The dataset sheets should be named using the dataset numbers read in from the ’Datasets’ sheet,
i.e. ’1’, ’2’, In each dataset sheet, the name of the observed variable (e.g. the acronym of
the parent compound or one of its transformation products) should be in the first column, the time
values should be in the second colum, and the observed value in the third column.

In case relevant covariate data are available, they should be given in a sheet ’Covariates’, containing
one line for each value of the grouping variable specified in ’Datasets’. These values should be
in the first column and the column must have the same name as the second column in ’Datasets’.
Covariates will be read in from columns four and higher. Their names should preferably not contain
special characters like spaces, so they can be easily used for specifying covariate models.

A similar data structure is defined as the R6 class mkindsg, but is probably more complicated to
use.

residuals.mkinfit 97

residuals.mkinfit Extract residuals from an mkinfit model

Description

Extract residuals from an mkinfit model

Usage

S3 method for class 'mkinfit'
residuals(object, standardized = FALSE, ...)

Arguments

object A mkinfit object

standardized Should the residuals be standardized by dividing by the standard deviation ob-
tained from the fitted error model?

... Not used

Examples

f <- mkinfit("DFOP", FOCUS_2006_C, quiet = TRUE)
residuals(f)
residuals(f, standardized = TRUE)

saem Fit nonlinear mixed models with SAEM

Description

This function uses saemix::saemix() as a backend for fitting nonlinear mixed effects models
created from mmkin row objects using the Stochastic Approximation Expectation Maximisation
algorithm (SAEM).

Usage

saem(object, ...)

S3 method for class 'mmkin'
saem(
object,
transformations = c("mkin", "saemix"),
error_model = "auto",
degparms_start = numeric(),
test_log_parms = TRUE,

98 saem

conf.level = 0.6,
solution_type = "auto",
covariance.model = "auto",
omega.init = "auto",
covariates = NULL,
covariate_models = NULL,
no_random_effect = NULL,
error.init = c(1, 1),
nbiter.saemix = c(300, 100),
control = list(displayProgress = FALSE, print = FALSE, nbiter.saemix = nbiter.saemix,

save = FALSE, save.graphs = FALSE),
verbose = FALSE,
quiet = FALSE,
...

)

S3 method for class 'saem.mmkin'
print(x, digits = max(3, getOption("digits") - 3), ...)

saemix_model(
object,
solution_type = "auto",
transformations = c("mkin", "saemix"),
error_model = "auto",
degparms_start = numeric(),
covariance.model = "auto",
no_random_effect = NULL,
omega.init = "auto",
covariates = NULL,
covariate_models = NULL,
error.init = numeric(),
test_log_parms = FALSE,
conf.level = 0.6,
verbose = FALSE,
...

)

saemix_data(object, covariates = NULL, verbose = FALSE, ...)

Arguments

object An mmkin row object containing several fits of the same mkinmod model to
different datasets

... Further parameters passed to saemix::saemixModel.
transformations

Per default, all parameter transformations are done in mkin. If this argument is
set to ’saemix’, parameter transformations are done in ’saemix’ for the supported
cases, i.e. (as of version 1.1.2) SFO, FOMC, DFOP and HS without fixing

saem 99

parent_0, and SFO or DFOP with one SFO metabolite.
error_model Possibility to override the error model used in the mmkin object
degparms_start Parameter values given as a named numeric vector will be used to override the

starting values obtained from the ’mmkin’ object.
test_log_parms If TRUE, an attempt is made to use more robust starting values for population

parameters fitted as log parameters in mkin (like rate constants) by only con-
sidering rate constants that pass the t-test when calculating mean degradation
parameters using mean_degparms.

conf.level Possibility to adjust the required confidence level for parameter that are tested if
requested by ’test_log_parms’.

solution_type Possibility to specify the solution type in case the automatic choice is not desired
covariance.model

Will be passed to saemix::saemixModel(). Per default, uncorrelated random
effects are specified for all degradation parameters.

omega.init Will be passed to saemix::saemixModel(). If using mkin transformations and
the default covariance model with optionally excluded random effects, the vari-
ances of the degradation parameters are estimated using mean_degparms, with
testing of untransformed log parameters for significant difference from zero. If
not using mkin transformations or a custom covariance model, the default ini-
tialisation of saemix::saemixModel is used for omega.init.

covariates A data frame with covariate data for use in ’covariate_models’, with dataset
names as row names.

covariate_models

A list containing linear model formulas with one explanatory variable, i.e. of the
type ’parameter ~ covariate’. Covariates must be available in the ’covariates’
data frame.

no_random_effect

Character vector of degradation parameters for which there should be no vari-
ability over the groups. Only used if the covariance model is not explicitly
specified.

error.init Will be passed to saemix::saemixModel().
nbiter.saemix Convenience option to increase the number of iterations
control Passed to saemix::saemix.
verbose Should we print information about created objects of type saemix::SaemixModel

and saemix::SaemixData?
quiet Should we suppress the messages saemix prints at the beginning and the end of

the optimisation process?
x An saem.mmkin object to print
digits Number of digits to use for printing

Details

An mmkin row object is essentially a list of mkinfit objects that have been obtained by fitting the
same model to a list of datasets using mkinfit.

Starting values for the fixed effects (population mean parameters, argument psi0 of saemix::saemixModel()
are the mean values of the parameters found using mmkin.

100 saem

Value

An S3 object of class ’saem.mmkin’, containing the fitted saemix::SaemixObject as a list component
named ’so’. The object also inherits from ’mixed.mmkin’.

An saemix::SaemixModel object.

An saemix::SaemixData object.

See Also

summary.saem.mmkin plot.mixed.mmkin

Examples

Not run:
ds <- lapply(experimental_data_for_UBA_2019[6:10],
function(x) subset(x$data[c("name", "time", "value")]))

names(ds) <- paste("Dataset", 6:10)
f_mmkin_parent_p0_fixed <- mmkin("FOMC", ds,

state.ini = c(parent = 100), fixed_initials = "parent", quiet = TRUE)
f_saem_p0_fixed <- saem(f_mmkin_parent_p0_fixed)

f_mmkin_parent <- mmkin(c("SFO", "FOMC", "DFOP"), ds, quiet = TRUE)
f_saem_sfo <- saem(f_mmkin_parent["SFO",])
f_saem_fomc <- saem(f_mmkin_parent["FOMC",])
f_saem_dfop <- saem(f_mmkin_parent["DFOP",])
anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
anova(f_saem_sfo, f_saem_dfop, test = TRUE)
illparms(f_saem_dfop)
f_saem_dfop_red <- update(f_saem_dfop, no_random_effect = "g_qlogis")
anova(f_saem_dfop, f_saem_dfop_red, test = TRUE)

anova(f_saem_sfo, f_saem_fomc, f_saem_dfop)
The returned saem.mmkin object contains an SaemixObject, therefore we can use
functions from saemix
library(saemix)
compare.saemix(f_saem_sfoso, f_saem_fomcso, f_saem_dfop$so)
plot(f_saem_fomc$so, plot.type = "convergence")
plot(f_saem_fomc$so, plot.type = "individual.fit")
plot(f_saem_fomc$so, plot.type = "npde")
plot(f_saem_fomc$so, plot.type = "vpc")

f_mmkin_parent_tc <- update(f_mmkin_parent, error_model = "tc")
f_saem_fomc_tc <- saem(f_mmkin_parent_tc["FOMC",])
anova(f_saem_fomc, f_saem_fomc_tc, test = TRUE)

sfo_sfo <- mkinmod(parent = mkinsub("SFO", "A1"),
A1 = mkinsub("SFO"))

fomc_sfo <- mkinmod(parent = mkinsub("FOMC", "A1"),
A1 = mkinsub("SFO"))

dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "A1"),
A1 = mkinsub("SFO"))

The following fit uses analytical solutions for SFO-SFO and DFOP-SFO,

schaefer07_complex_case 101

and compiled ODEs for FOMC that are much slower
f_mmkin <- mmkin(list(

"SFO-SFO" = sfo_sfo, "FOMC-SFO" = fomc_sfo, "DFOP-SFO" = dfop_sfo),
ds, quiet = TRUE)

saem fits of SFO-SFO and DFOP-SFO to these data take about five seconds
each on this system, as we use analytical solutions written for saemix.
When using the analytical solutions written for mkin this took around
four minutes
f_saem_sfo_sfo <- saem(f_mmkin["SFO-SFO",])
f_saem_dfop_sfo <- saem(f_mmkin["DFOP-SFO",])
We can use print, plot and summary methods to check the results
print(f_saem_dfop_sfo)
plot(f_saem_dfop_sfo)
summary(f_saem_dfop_sfo, data = TRUE)

The following takes about 6 minutes
f_saem_dfop_sfo_deSolve <- saem(f_mmkin["DFOP-SFO",], solution_type = "deSolve",

nbiter.saemix = c(200, 80))

#anova(
f_saem_dfop_sfo,
f_saem_dfop_sfo_deSolve))

If the model supports it, we can also use eigenvalue based solutions, which
take a similar amount of time
#f_saem_sfo_sfo_eigen <- saem(f_mmkin["SFO-SFO",], solution_type = "eigen",
control = list(nbiter.saemix = c(200, 80), nbdisplay = 10))

End(Not run)

schaefer07_complex_case

Metabolism data set used for checking the software quality of KinGUI

Description

This dataset was used for a comparison of KinGUI and ModelMaker to check the software quality
of KinGUI in the original publication (Schäfer et al., 2007). The results from the fitting are also
included.

Usage

schaefer07_complex_case

Format

The data set is a data frame with 8 observations on the following 6 variables.

time a numeric vector

parent a numeric vector

102 set_nd_nq

A1 a numeric vector

B1 a numeric vector

C1 a numeric vector

A2 a numeric vector

The results are a data frame with 14 results for different parameter values

References

Schäfer D, Mikolasch B, Rainbird P and Harvey B (2007). KinGUI: a new kinetic software tool
for evaluations according to FOCUS degradation kinetics. In: Del Re AAM, Capri E, Fragoulis G
and Trevisan M (Eds.). Proceedings of the XIII Symposium Pesticide Chemistry, Piacenza, 2007,
p. 916-923.

Examples

data <- mkin_wide_to_long(schaefer07_complex_case, time = "time")
model <- mkinmod(

parent = list(type = "SFO", to = c("A1", "B1", "C1"), sink = FALSE),
A1 = list(type = "SFO", to = "A2"),
B1 = list(type = "SFO"),
C1 = list(type = "SFO"),
A2 = list(type = "SFO"), use_of_ff = "max")
Not run:
fit <- mkinfit(model, data, quiet = TRUE)
plot(fit)
endpoints(fit)

End(Not run)
Compare with the results obtained in the original publication
print(schaefer07_complex_results)

set_nd_nq Set non-detects and unquantified values in residue series without repli-
cates

Description

This function automates replacing unquantified values in residue time and depth series. For time se-
ries, the function performs part of the residue processing proposed in the FOCUS kinetics guidance
for parent compounds and metabolites. For two-dimensional residue series over time and depth, it
automates the proposal of Boesten et al (2015).

set_nd_nq 103

Usage

set_nd_nq(res_raw, lod, loq = NA, time_zero_presence = FALSE)

set_nd_nq_focus(
res_raw,
lod,
loq = NA,
set_first_sample_nd = TRUE,
first_sample_nd_value = 0,
ignore_below_loq_after_first_nd = TRUE

)

Arguments

res_raw Character vector of a residue time series, or matrix of residue values with rows
representing depth profiles for a specific sampling time, and columns represent-
ing time series of residues at the same depth. Values below the limit of detection
(lod) have to be coded as "nd", values between the limit of detection and the
limit of quantification, if any, have to be coded as "nq". Samples not analysed
have to be coded as "na". All values that are not "na", "nd" or "nq" have to be
coercible to numeric

lod Limit of detection (numeric)

loq Limit of quantification(numeric). Must be specified if the FOCUS rule to stop
after the first non-detection is to be applied

time_zero_presence

Do we assume that residues occur at time zero? This only affects samples from
the first sampling time that have been reported as "nd" (not detected).

set_first_sample_nd

Should the first sample be set to "first_sample_nd_value" in case it is a non-
detection?

first_sample_nd_value

Value to be used for the first sample if it is a non-detection

ignore_below_loq_after_first_nd

Should we ignore values below the LOQ after the first non-detection that occurs
after the quantified values?

Value

A numeric vector, if a vector was supplied, or a numeric matrix otherwise

Functions

• set_nd_nq_focus(): Set non-detects in residue time series according to FOCUS rules

104 SFO.solution

References

Boesten, J. J. T. I., van der Linden, A. M. A., Beltman, W. H. J. and Pol, J. W. (2015). Leaching
of plant protection products and their transformation products; Proposals for improving the assess-
ment of leaching to groundwater in the Netherlands — Version 2. Alterra report 2630, Alterra
Wageningen UR (University & Research centre)

FOCUS (2014) Generic Guidance for Estimating Persistence and Degradation Kinetics from Envi-
ronmental Fate Studies on Pesticides in EU Registration, Version 1.1, 18 December 2014, p. 251

Examples

FOCUS (2014) p. 75/76 and 131/132
parent_1 <- c(.12, .09, .05, .03, "nd", "nd", "nd", "nd", "nd", "nd")
set_nd_nq(parent_1, 0.02)
parent_2 <- c(.12, .09, .05, .03, "nd", "nd", .03, "nd", "nd", "nd")
set_nd_nq(parent_2, 0.02)
set_nd_nq_focus(parent_2, 0.02, loq = 0.05)
parent_3 <- c(.12, .09, .05, .03, "nd", "nd", .06, "nd", "nd", "nd")
set_nd_nq(parent_3, 0.02)
set_nd_nq_focus(parent_3, 0.02, loq = 0.05)
metabolite <- c("nd", "nd", "nd", 0.03, 0.06, 0.10, 0.11, 0.10, 0.09, 0.05, 0.03, "nd", "nd")
set_nd_nq(metabolite, 0.02)
set_nd_nq_focus(metabolite, 0.02, 0.05)
#
Boesten et al. (2015), p. 57/58
table_8 <- matrix(

c(10, 10, rep("nd", 4),
10, 10, rep("nq", 2), rep("nd", 2),
10, 10, 10, "nq", "nd", "nd",
"nq", 10, "nq", rep("nd", 3),
"nd", "nq", "nq", rep("nd", 3),
rep("nd", 6), rep("nd", 6)),

ncol = 6, byrow = TRUE)
set_nd_nq(table_8, 0.5, 1.5, time_zero_presence = TRUE)
table_10 <- matrix(

c(10, 10, rep("nd", 4),
10, 10, rep("nd", 4),
10, 10, 10, rep("nd", 3),
"nd", 10, rep("nd", 4),
rep("nd", 18)),

ncol = 6, byrow = TRUE)
set_nd_nq(table_10, 0.5, time_zero_presence = TRUE)

SFO.solution Single First-Order kinetics

Description

Function describing exponential decline from a defined starting value.

SFORB.solution 105

Usage

SFO.solution(t, parent_0, k)

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

k Kinetic rate constant.

Value

The value of the response variable at time t.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), HS.solution(), IORE.solution(),
SFORB.solution(), logistic.solution()

Examples

Not run: plot(function(x) SFO.solution(x, 100, 3), 0, 2)

SFORB.solution Single First-Order Reversible Binding kinetics

Description

Function describing the solution of the differential equations describing the kinetic model with first-
order terms for a two-way transfer from a free to a bound fraction, and a first-order degradation term
for the free fraction. The initial condition is a defined amount in the free fraction and no substance
in the bound fraction.

Usage

SFORB.solution(t, parent_0, k_12, k_21, k_1output)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

106 sigma_twocomp

Arguments

t Time.

parent_0 Starting value for the response variable at time zero.

k_12 Kinetic constant describing transfer from free to bound.

k_21 Kinetic constant describing transfer from bound to free.

k_1output Kinetic constant describing degradation of the free fraction.

Value

The value of the response variable, which is the sum of free and bound fractions at time t.

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics FOCUS (2014) “Generic guid-
ance for Estimating Persistence and Degradation Kinetics from Environmental Fate Studies on Pes-
ticides in EU Registration” Report of the FOCUS Work Group on Degradation Kinetics, Version
1.1, 18 December 2014 http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

See Also

Other parent solutions: DFOP.solution(), FOMC.solution(), HS.solution(), IORE.solution(),
SFO.solution(), logistic.solution()

Examples

Not run: plot(function(x) SFORB.solution(x, 100, 0.5, 2, 3), 0, 2)

sigma_twocomp Two-component error model

Description

Function describing the standard deviation of the measurement error in dependence of the measured
value y:

Usage

sigma_twocomp(y, sigma_low, rsd_high)

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

sigma_twocomp 107

Arguments

y The magnitude of the observed value
sigma_low The asymptotic minimum of the standard deviation for low observed values
rsd_high The coefficient describing the increase of the standard deviation with the mag-

nitude of the observed value

Details

σ =
√

σ2
low + y2 ∗ rsd2high

sigma = sqrt(sigma_low^2 + y^2 * rsd_high^2)

This is the error model used for example by Werner et al. (1978). The model proposed by Rocke
and Lorenzato (1995) can be written in this form as well, but assumes approximate lognormal
distribution of errors for high values of y.

Value

The standard deviation of the response variable.

References

Werner, Mario, Brooks, Samuel H., and Knott, Lancaster B. (1978) Additive, Multiplicative, and
Mixed Analytical Errors. Clinical Chemistry 24(11), 1895-1898.

Rocke, David M. and Lorenzato, Stefan (1995) A two-component model for measurement error in
analytical chemistry. Technometrics 37(2), 176-184.

Ranke J and Meinecke S (2019) Error Models for the Kinetic Evaluation of Chemical Degradation
Data. Environments 6(12) 124 doi:10.3390/environments6120124.

Examples

times <- c(0, 1, 3, 7, 14, 28, 60, 90, 120)
d_pred <- data.frame(time = times, parent = 100 * exp(- 0.03 * times))
set.seed(123456)
d_syn <- add_err(d_pred, function(y) sigma_twocomp(y, 1, 0.07),

reps = 2, n = 1)[[1]]
f_nls <- nls(value ~ SSasymp(time, 0, parent_0, lrc), data = d_syn,
start = list(parent_0 = 100, lrc = -3))

library(nlme)
f_gnls <- gnls(value ~ SSasymp(time, 0, parent_0, lrc),

data = d_syn, na.action = na.omit,
start = list(parent_0 = 100, lrc = -3))

if (length(findFunction("varConstProp")) > 0) {
f_gnls_tc <- update(f_gnls, weights = varConstProp())
f_gnls_tc_sf <- update(f_gnls_tc, control = list(sigma = 1))

}
f_mkin <- mkinfit("SFO", d_syn, error_model = "const", quiet = TRUE)
f_mkin_tc <- mkinfit("SFO", d_syn, error_model = "tc", quiet = TRUE)
plot_res(f_mkin_tc, standardized = TRUE)
AIC(f_nls, f_gnls, f_gnls_tc, f_gnls_tc_sf, f_mkin, f_mkin_tc)

https://doi.org/10.3390/environments6120124

108 status

status Method to get status information for fit array objects

Description

Method to get status information for fit array objects

Usage

status(object, ...)

S3 method for class 'mmkin'
status(object, ...)

S3 method for class 'status.mmkin'
print(x, ...)

S3 method for class 'mhmkin'
status(object, ...)

S3 method for class 'status.mhmkin'
print(x, ...)

Arguments

object The object to investigate

... For potential future extensions

x The object to be printed

Value

An object with the same dimensions as the fit array suitable printing method.

Examples

Not run:
fits <- mmkin(

c("SFO", "FOMC"),
list("FOCUS A" = FOCUS_2006_A,

"FOCUS B" = FOCUS_2006_C),
quiet = TRUE)

status(fits)

End(Not run)

summary.mkinfit 109

summary.mkinfit Summary method for class "mkinfit"

Description

Lists model equations, initial parameter values, optimised parameters with some uncertainty statis-
tics, the chi2 error levels calculated according to FOCUS guidance (2006) as defined therein, forma-
tion fractions, DT50 values and optionally the data, consisting of observed, predicted and residual
values.

Usage

S3 method for class 'mkinfit'
summary(object, data = TRUE, distimes = TRUE, alpha = 0.05, ...)

S3 method for class 'summary.mkinfit'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object an object of class mkinfit.

data logical, indicating whether the data should be included in the summary.

distimes logical, indicating whether DT50 and DT90 values should be included.

alpha error level for confidence interval estimation from t distribution

... optional arguments passed to methods like print.

x an object of class summary.mkinfit.

digits Number of digits to use for printing

Value

The summary function returns a list with components, among others

version, Rversion
The mkin and R versions used

date.fit, date.summary
The dates where the fit and the summary were produced

diffs The differential equations used in the model

use_of_ff Was maximum or minimum use made of formation fractions

bpar Optimised and backtransformed parameters

data The data (see Description above).

start The starting values and bounds, if applicable, for optimised parameters.

fixed The values of fixed parameters.

errmin The chi2 error levels for each observed variable.

110 summary.mmkin

bparms.ode All backtransformed ODE parameters, for use as starting parameters for related
models.

errparms Error model parameters.
ff The estimated formation fractions derived from the fitted model.
distimes The DT50 and DT90 values for each observed variable.
SFORB If applicable, eigenvalues and fractional eigenvector component g of SFORB

systems in the model.

The print method is called for its side effect, i.e. printing the summary.

Author(s)

Johannes Ranke

References

FOCUS (2006) “Guidance Document on Estimating Persistence and Degradation Kinetics from
Environmental Fate Studies on Pesticides in EU Registration” Report of the FOCUS Work Group
on Degradation Kinetics, EC Document Reference Sanco/10058/2005 version 2.0, 434 pp, http:
//esdac.jrc.ec.europa.eu/projects/degradation-kinetics

Examples

summary(mkinfit("SFO", FOCUS_2006_A, quiet = TRUE))

summary.mmkin Summary method for class "mmkin"

Description

Shows status information on the mkinfit objects contained in the object and gives an overview of
ill-defined parameters calculated by illparms.

Usage

S3 method for class 'mmkin'
summary(object, conf.level = 0.95, ...)

S3 method for class 'summary.mmkin'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

object an object of class mmkin
conf.level confidence level for testing parameters
... optional arguments passed to methods like print.
x an object of class summary.mmkin.
digits number of digits to use for printing

http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics
http://esdac.jrc.ec.europa.eu/projects/degradation-kinetics

summary.nlme.mmkin 111

Examples

fits <- mmkin(
c("SFO", "FOMC"),
list("FOCUS A" = FOCUS_2006_A,

"FOCUS C" = FOCUS_2006_C),
quiet = TRUE, cores = 1)
summary(fits)

summary.nlme.mmkin Summary method for class "nlme.mmkin"

Description

Lists model equations, initial parameter values, optimised parameters for fixed effects (population),
random effects (deviations from the population mean) and residual error model, as well as the
resulting endpoints such as formation fractions and DT50 values. Optionally (default is FALSE),
the data are listed in full.

Usage

S3 method for class 'nlme.mmkin'
summary(
object,
data = FALSE,
verbose = FALSE,
distimes = TRUE,
alpha = 0.05,
...

)

S3 method for class 'summary.nlme.mmkin'
print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)

Arguments

object an object of class nlme.mmkin

data logical, indicating whether the full data should be included in the summary.

verbose Should the summary be verbose?

distimes logical, indicating whether DT50 and DT90 values should be included.

alpha error level for confidence interval estimation from the t distribution

... optional arguments passed to methods like print.

x an object of class summary.nlme.mmkin

digits Number of digits to use for printing

112 summary.nlme.mmkin

Value

The summary function returns a list based on the nlme object obtained in the fit, with at least the
following additional components

nlmeversion, mkinversion, Rversion
The nlme, mkin and R versions used

date.fit, date.summary
The dates where the fit and the summary were produced

diffs The differential equations used in the degradation model

use_of_ff Was maximum or minimum use made of formation fractions

data The data

confint_trans Transformed parameters as used in the optimisation, with confidence intervals

confint_back Backtransformed parameters, with confidence intervals if available

ff The estimated formation fractions derived from the fitted model.

distimes The DT50 and DT90 values for each observed variable.

SFORB If applicable, eigenvalues of SFORB components of the model.

The print method is called for its side effect, i.e. printing the summary.

Author(s)

Johannes Ranke for the mkin specific parts José Pinheiro and Douglas Bates for the components
inherited from nlme

Examples

Generate five datasets following SFO kinetics
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
dt50_sfo_in_pop <- 50
k_in_pop <- log(2) / dt50_sfo_in_pop
set.seed(1234)
k_in <- rlnorm(5, log(k_in_pop), 0.5)
SFO <- mkinmod(parent = mkinsub("SFO"))

pred_sfo <- function(k) {
mkinpredict(SFO,

c(k_parent = k),
c(parent = 100),
sampling_times)

}

ds_sfo_mean <- lapply(k_in, pred_sfo)
names(ds_sfo_mean) <- paste("ds", 1:5)

set.seed(12345)
ds_sfo_syn <- lapply(ds_sfo_mean, function(ds) {

add_err(ds,
sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),

summary.saem.mmkin 113

n = 1)[[1]]
})

Not run:
Evaluate using mmkin and nlme
library(nlme)
f_mmkin <- mmkin("SFO", ds_sfo_syn, quiet = TRUE, error_model = "tc", cores = 1)
f_nlme <- nlme(f_mmkin)
summary(f_nlme, data = TRUE)

End(Not run)

summary.saem.mmkin Summary method for class "saem.mmkin"

Description

Lists model equations, initial parameter values, optimised parameters for fixed effects (population),
random effects (deviations from the population mean) and residual error model, as well as the
resulting endpoints such as formation fractions and DT50 values. Optionally (default is FALSE),
the data are listed in full.

Usage

S3 method for class 'saem.mmkin'
summary(
object,
data = FALSE,
verbose = FALSE,
covariates = NULL,
covariate_quantile = 0.5,
distimes = TRUE,
...

)

S3 method for class 'summary.saem.mmkin'
print(x, digits = max(3, getOption("digits") - 3), verbose = x$verbose, ...)

Arguments

object an object of class saem.mmkin

data logical, indicating whether the full data should be included in the summary.

verbose Should the summary be verbose?

covariates Numeric vector with covariate values for all variables in any covariate models
in the object. If given, it overrides ’covariate_quantile’.

114 summary.saem.mmkin

covariate_quantile

This argument only has an effect if the fitted object has covariate models. If
so, the default is to show endpoints for the median of the covariate values (50th
percentile).

distimes logical, indicating whether DT50 and DT90 values should be included.

... optional arguments passed to methods like print.

x an object of class summary.saem.mmkin

digits Number of digits to use for printing

Value

The summary function returns a list based on the saemix::SaemixObject obtained in the fit, with at
least the following additional components

saemixversion, mkinversion, Rversion
The saemix, mkin and R versions used

date.fit, date.summary
The dates where the fit and the summary were produced

diffs The differential equations used in the degradation model

use_of_ff Was maximum or minimum use made of formation fractions

data The data

confint_trans Transformed parameters as used in the optimisation, with confidence intervals

confint_back Backtransformed parameters, with confidence intervals if available

confint_errmod Error model parameters with confidence intervals

ff The estimated formation fractions derived from the fitted model.

distimes The DT50 and DT90 values for each observed variable.

SFORB If applicable, eigenvalues of SFORB components of the model.

The print method is called for its side effect, i.e. printing the summary.

Author(s)

Johannes Ranke for the mkin specific parts saemix authors for the parts inherited from saemix.

Examples

Generate five datasets following DFOP-SFO kinetics
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)
dfop_sfo <- mkinmod(parent = mkinsub("DFOP", "m1"),
m1 = mkinsub("SFO"), quiet = TRUE)

set.seed(1234)
k1_in <- rlnorm(5, log(0.1), 0.3)
k2_in <- rlnorm(5, log(0.02), 0.3)
g_in <- plogis(rnorm(5, qlogis(0.5), 0.3))
f_parent_to_m1_in <- plogis(rnorm(5, qlogis(0.3), 0.3))
k_m1_in <- rlnorm(5, log(0.02), 0.3)

summary_listing 115

pred_dfop_sfo <- function(k1, k2, g, f_parent_to_m1, k_m1) {
mkinpredict(dfop_sfo,
c(k1 = k1, k2 = k2, g = g, f_parent_to_m1 = f_parent_to_m1, k_m1 = k_m1),
c(parent = 100, m1 = 0),
sampling_times)

}

ds_mean_dfop_sfo <- lapply(1:5, function(i) {
mkinpredict(dfop_sfo,
c(k1 = k1_in[i], k2 = k2_in[i], g = g_in[i],

f_parent_to_m1 = f_parent_to_m1_in[i], k_m1 = k_m1_in[i]),
c(parent = 100, m1 = 0),
sampling_times)

})
names(ds_mean_dfop_sfo) <- paste("ds", 1:5)

ds_syn_dfop_sfo <- lapply(ds_mean_dfop_sfo, function(ds) {
add_err(ds,
sdfunc = function(value) sqrt(1^2 + value^2 * 0.07^2),
n = 1)[[1]]

})

Not run:
Evaluate using mmkin and saem
f_mmkin_dfop_sfo <- mmkin(list(dfop_sfo), ds_syn_dfop_sfo,

quiet = TRUE, error_model = "tc", cores = 5)
f_saem_dfop_sfo <- saem(f_mmkin_dfop_sfo)
print(f_saem_dfop_sfo)
illparms(f_saem_dfop_sfo)
f_saem_dfop_sfo_2 <- update(f_saem_dfop_sfo,

no_random_effect = c("parent_0", "log_k_m1"))
illparms(f_saem_dfop_sfo_2)
intervals(f_saem_dfop_sfo_2)
summary(f_saem_dfop_sfo_2, data = TRUE)
Add a correlation between random effects of g and k2
cov_model_3 <- f_saem_dfop_sfo_2$so@model@covariance.model
cov_model_3["log_k2", "g_qlogis"] <- 1
cov_model_3["g_qlogis", "log_k2"] <- 1
f_saem_dfop_sfo_3 <- update(f_saem_dfop_sfo,

covariance.model = cov_model_3)
intervals(f_saem_dfop_sfo_3)
The correlation does not improve the fit judged by AIC and BIC, although
the likelihood is higher with the additional parameter
anova(f_saem_dfop_sfo, f_saem_dfop_sfo_2, f_saem_dfop_sfo_3)

End(Not run)

summary_listing Display the output of a summary function according to the output for-
mat

116 synthetic_data_for_UBA_2014

Description

This function is intended for use in a R markdown code chunk with the chunk option results =
"asis".

Usage

summary_listing(object, caption = NULL, label = NULL, clearpage = TRUE)

tex_listing(object, caption = NULL, label = NULL, clearpage = TRUE)

html_listing(object, caption = NULL)

Arguments

object The object for which the summary is to be listed

caption An optional caption

label An optional label, ignored in html output

clearpage Should a new page be started after the listing? Ignored in html output

synthetic_data_for_UBA_2014

Synthetic datasets for one parent compound with two metabolites

Description

The 12 datasets were generated using four different models and three different variance components.
The four models are either the SFO or the DFOP model with either two sequential or two parallel
metabolites.

Variance component ’a’ is based on a normal distribution with standard deviation of 3, Variance
component ’b’ is also based on a normal distribution, but with a standard deviation of 7. Variance
component ’c’ is based on the error model from Rocke and Lorenzato (1995), with the minimum
standard deviation (for small y values) of 0.5, and a proportionality constant of 0.07 for the increase
of the standard deviation with y. Note that this is a simplified version of the error model proposed
by Rocke and Lorenzato (1995), as in their model the error of the measured values approximates
lognormal distribution for high values, whereas we are using normally distributed error components
all along.

Initial concentrations for metabolites and all values where adding the variance component resulted
in a value below the assumed limit of detection of 0.1 were set to NA.

As an example, the first dataset has the title SFO_lin_a and is based on the SFO model with two
sequential metabolites (linear pathway), with added variance component ’a’.

Compare also the code in the example section to see the degradation models.

Usage

synthetic_data_for_UBA_2014

synthetic_data_for_UBA_2014 117

Format

A list containing twelve datasets as an R6 class defined by mkinds, each containing, among others,
the following components

title The name of the dataset, e.g. SFO_lin_a

data A data frame with the data in the form expected by mkinfit

Source

Ranke (2014) Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker
4.0, Umweltbundesamt Projektnummer 27452

Rocke, David M. und Lorenzato, Stefan (1995) A two-component model for measurement error in
analytical chemistry. Technometrics 37(2), 176-184.

Examples

Not run:
The data have been generated using the following kinetic models
m_synth_SFO_lin <- mkinmod(parent = list(type = "SFO", to = "M1"),

M1 = list(type = "SFO", to = "M2"),
M2 = list(type = "SFO"), use_of_ff = "max")

m_synth_SFO_par <- mkinmod(parent = list(type = "SFO", to = c("M1", "M2"),
sink = FALSE),

M1 = list(type = "SFO"),
M2 = list(type = "SFO"), use_of_ff = "max")

m_synth_DFOP_lin <- mkinmod(parent = list(type = "DFOP", to = "M1"),
M1 = list(type = "SFO", to = "M2"),
M2 = list(type = "SFO"), use_of_ff = "max")

m_synth_DFOP_par <- mkinmod(parent = list(type = "DFOP", to = c("M1", "M2"),
sink = FALSE),

M1 = list(type = "SFO"),
M2 = list(type = "SFO"), use_of_ff = "max")

The model predictions without intentional error were generated as follows
sampling_times = c(0, 1, 3, 7, 14, 28, 60, 90, 120)

d_synth_SFO_lin <- mkinpredict(m_synth_SFO_lin,
c(k_parent = 0.7, f_parent_to_M1 = 0.8,

k_M1 = 0.3, f_M1_to_M2 = 0.7,
k_M2 = 0.02),

c(parent = 100, M1 = 0, M2 = 0),
sampling_times)

d_synth_DFOP_lin <- mkinpredict(m_synth_DFOP_lin,
c(k1 = 0.2, k2 = 0.02, g = 0.5,

f_parent_to_M1 = 0.5, k_M1 = 0.3,
f_M1_to_M2 = 0.7, k_M2 = 0.02),

118 synthetic_data_for_UBA_2014

c(parent = 100, M1 = 0, M2 = 0),
sampling_times)

d_synth_SFO_par <- mkinpredict(m_synth_SFO_par,
c(k_parent = 0.2,

f_parent_to_M1 = 0.8, k_M1 = 0.01,
f_parent_to_M2 = 0.2, k_M2 = 0.02),
c(parent = 100, M1 = 0, M2 = 0),
sampling_times)

d_synth_DFOP_par <- mkinpredict(m_synth_DFOP_par,
c(k1 = 0.3, k2 = 0.02, g = 0.7,

f_parent_to_M1 = 0.6, k_M1 = 0.04,
f_parent_to_M2 = 0.4, k_M2 = 0.01),
c(parent = 100, M1 = 0, M2 = 0),
sampling_times)

Construct names for datasets with errors
d_synth_names = paste0("d_synth_", c("SFO_lin", "SFO_par",

"DFOP_lin", "DFOP_par"))

Original function used or adding errors. The add_err function now published
with this package is a slightly generalised version where the names of
secondary compartments that should have an initial value of zero (M1 and M2
in this case) are not hardcoded any more.
add_err = function(d, sdfunc, LOD = 0.1, reps = 2, seed = 123456789)
{
set.seed(seed)
d_long = mkin_wide_to_long(d, time = "time")
d_rep = data.frame(lapply(d_long, rep, each = 2))
d_rep$value = rnorm(length(d_rep$value), d_rep$value, sdfunc(d_rep$value))
#
d_rep[d_rep$time == 0 & d_rep$name %in% c("M1", "M2"), "value"] <- 0
d_NA <- transform(d_rep, value = ifelse(value < LOD, NA, value))
d_NA$value <- round(d_NA$value, 1)
return(d_NA)
}

The following is the simplified version of the two-component model of Rocke
and Lorenzato (1995)
sdfunc_twocomp = function(value, sd_low, rsd_high) {

sqrt(sd_low^2 + value^2 * rsd_high^2)
}

Add the errors.
for (d_synth_name in d_synth_names)
{

d_synth = get(d_synth_name)
assign(paste0(d_synth_name, "_a"), add_err(d_synth, function(value) 3))
assign(paste0(d_synth_name, "_b"), add_err(d_synth, function(value) 7))
assign(paste0(d_synth_name, "_c"), add_err(d_synth,

function(value) sdfunc_twocomp(value, 0.5, 0.07)))

test_data_from_UBA_2014 119

}

d_synth_err_names = c(
paste(rep(d_synth_names, each = 3), letters[1:3], sep = "_")

)

This is just one example of an evaluation using the kinetic model used for
the generation of the data

fit <- mkinfit(m_synth_SFO_lin, synthetic_data_for_UBA_2014[[1]]$data,
quiet = TRUE)

plot_sep(fit)
summary(fit)

End(Not run)

test_data_from_UBA_2014

Three experimental datasets from two water sediment systems and one
soil

Description

The datasets were used for the comparative validation of several kinetic evaluation software pack-
ages (Ranke, 2014).

Usage

test_data_from_UBA_2014

Format

A list containing three datasets as an R6 class defined by mkinds. Each dataset has, among others,
the following components

title The name of the dataset, e.g. UBA_2014_WS_river

data A data frame with the data in the form expected by mkinfit

Source

Ranke (2014) Prüfung und Validierung von Modellierungssoftware als Alternative zu ModelMaker
4.0, Umweltbundesamt Projektnummer 27452

Examples

Not run:
This is a level P-II evaluation of the dataset according to the FOCUS kinetics
guidance. Due to the strong correlation of the parameter estimates, the
covariance matrix is not returned. Note that level P-II evaluations are
generally considered deprecated due to the frequent occurrence of such

120 transform_odeparms

large parameter correlations, among other reasons (e.g. the adequacy of the
model).
m_ws <- mkinmod(parent_w = mkinsub("SFO", "parent_s"),

parent_s = mkinsub("SFO", "parent_w"))
f_river <- mkinfit(m_ws, test_data_from_UBA_2014[[1]]$data, quiet = TRUE)
plot_sep(f_river)

summary(f_river)$bpar
mkinerrmin(f_river)

This is the evaluation used for the validation of software packages
in the expertise from 2014
m_soil <- mkinmod(parent = mkinsub("SFO", c("M1", "M2")),

M1 = mkinsub("SFO", "M3"),
M2 = mkinsub("SFO", "M3"),
M3 = mkinsub("SFO"),
use_of_ff = "max")

f_soil <- mkinfit(m_soil, test_data_from_UBA_2014[[3]]$data, quiet = TRUE)
plot_sep(f_soil, lpos = c("topright", "topright", "topright", "bottomright"))
summary(f_soil)$bpar
mkinerrmin(f_soil)

End(Not run)

transform_odeparms Functions to transform and backtransform kinetic parameters for fit-
ting

Description

The transformations are intended to map parameters that should only take on restricted values to
the full scale of real numbers. For kinetic rate constants and other parameters that can only take
on positive values, a simple log transformation is used. For compositional parameters, such as the
formations fractions that should always sum up to 1 and can not be negative, the ilr transformation
is used.

Usage

transform_odeparms(
parms,
mkinmod,
transform_rates = TRUE,
transform_fractions = TRUE

)

backtransform_odeparms(
transparms,
mkinmod,

transform_odeparms 121

transform_rates = TRUE,
transform_fractions = TRUE

)

Arguments

parms Parameters of kinetic models as used in the differential equations.

mkinmod The kinetic model of class mkinmod, containing the names of the model vari-
ables that are needed for grouping the formation fractions before ilr transforma-
tion, the parameter names and the information if the pathway to sink is included
in the model.

transform_rates

Boolean specifying if kinetic rate constants should be transformed in the model
specification used in the fitting for better compliance with the assumption of
normal distribution of the estimator. If TRUE, also alpha and beta parameters
of the FOMC model are log-transformed, as well as k1 and k2 rate constants for
the DFOP and HS models and the break point tb of the HS model.

transform_fractions

Boolean specifying if formation fractions constants should be transformed in the
model specification used in the fitting for better compliance with the assumption
of normal distribution of the estimator. The default (TRUE) is to do transforma-
tions. The g parameter of the DFOP model is also seen as a fraction. If a single
fraction is transformed (g parameter of DFOP or only a single target variable
e.g. a single metabolite plus a pathway to sink), a logistic transformation is used
stats::qlogis(). In other cases, i.e. if two or more formation fractions need
to be transformed whose sum cannot exceed one, the ilr transformation is used.

transparms Transformed parameters of kinetic models as used in the fitting procedure.

Details

The transformation of sets of formation fractions is fragile, as it supposes the same ordering of the
components in forward and backward transformation. This is no problem for the internal use in
mkinfit.

Value

A vector of transformed or backtransformed parameters

Author(s)

Johannes Ranke

Examples

SFO_SFO <- mkinmod(
parent = list(type = "SFO", to = "m1", sink = TRUE),
m1 = list(type = "SFO"), use_of_ff = "min")

Fit the model to the FOCUS example dataset D using defaults

122 transform_odeparms

FOCUS_D <- subset(FOCUS_2006_D, value != 0) # remove zero values to avoid warning
fit <- mkinfit(SFO_SFO, FOCUS_D, quiet = TRUE)
fit.s <- summary(fit)
Transformed and backtransformed parameters
print(fit.s$par, 3)
print(fit.s$bpar, 3)

Not run:
Compare to the version without transforming rate parameters (does not work
with analytical solution, we get NA values for m1 in predictions)
fit.2 <- mkinfit(SFO_SFO, FOCUS_D, transform_rates = FALSE,

solution_type = "deSolve", quiet = TRUE)
fit.2.s <- summary(fit.2)
print(fit.2.s$par, 3)
print(fit.2.s$bpar, 3)

End(Not run)

initials <- fit$start$value
names(initials) <- rownames(fit$start)
transformed <- fit$start_transformed$value
names(transformed) <- rownames(fit$start_transformed)
transform_odeparms(initials, SFO_SFO)
backtransform_odeparms(transformed, SFO_SFO)

Not run:
The case of formation fractions (this is now the default)
SFO_SFO.ff <- mkinmod(

parent = list(type = "SFO", to = "m1", sink = TRUE),
m1 = list(type = "SFO"),
use_of_ff = "max")

fit.ff <- mkinfit(SFO_SFO.ff, FOCUS_D, quiet = TRUE)
fit.ff.s <- summary(fit.ff)
print(fit.ff.s$par, 3)
print(fit.ff.s$bpar, 3)
initials <- c("f_parent_to_m1" = 0.5)
transformed <- transform_odeparms(initials, SFO_SFO.ff)
backtransform_odeparms(transformed, SFO_SFO.ff)

And without sink
SFO_SFO.ff.2 <- mkinmod(

parent = list(type = "SFO", to = "m1", sink = FALSE),
m1 = list(type = "SFO"),
use_of_ff = "max")

fit.ff.2 <- mkinfit(SFO_SFO.ff.2, FOCUS_D, quiet = TRUE)
fit.ff.2.s <- summary(fit.ff.2)
print(fit.ff.2.s$par, 3)
print(fit.ff.2.s$bpar, 3)

End(Not run)

update.mkinfit 123

update.mkinfit Update an mkinfit model with different arguments

Description

This function will return an updated mkinfit object. The fitted degradation model parameters from
the old fit are used as starting values for the updated fit. Values specified as ’parms.ini’ and/or
’state.ini’ will override these starting values.

Usage

S3 method for class 'mkinfit'
update(object, ..., evaluate = TRUE)

Arguments

object An mkinfit object to be updated

... Arguments to mkinfit that should replace the arguments from the original call.
Arguments set to NULL will remove arguments given in the original call

evaluate Should the call be evaluated or returned as a call

Examples

Not run:
fit <- mkinfit("SFO", subset(FOCUS_2006_D, value != 0), quiet = TRUE)
parms(fit)
plot_err(fit)
fit_2 <- update(fit, error_model = "tc")
parms(fit_2)
plot_err(fit_2)

End(Not run)

[.mmkin Subsetting method for mmkin objects

Description

Subsetting method for mmkin objects

Usage

S3 method for class 'mmkin'
x[i, j, ..., drop = FALSE]

124 [.mmkin

Arguments

x An mmkin object

i Row index selecting the fits for specific models

j Column index selecting the fits to specific datasets

... Not used, only there to satisfy the generic method definition

drop If FALSE, the method always returns an mmkin object, otherwise either a list of
mkinfit objects or a single mkinfit object.

Value

An object of class mmkin.

Author(s)

Johannes Ranke

Examples

Only use one core, to pass R CMD check --as-cran
fits <- mmkin(c("SFO", "FOMC"), list(B = FOCUS_2006_B, C = FOCUS_2006_C),

cores = 1, quiet = TRUE)
fits["FOMC",]
fits[, "B"]
fits["SFO", "B"]

head(
This extracts an mkinfit object with lots of components
fits[["FOMC", "B"]]

)

Index

∗ datasets
D24_2014, 14
dimethenamid_2018, 16
experimental_data_for_UBA_2019, 20
FOCUS_2006_datasets, 22
FOCUS_2006_DFOP_ref_A_to_B, 23
FOCUS_2006_FOMC_ref_A_to_F, 24
FOCUS_2006_HS_ref_A_to_F, 25
FOCUS_2006_SFO_ref_A_to_F, 26
focus_soil_moisture, 27
mccall81_245T, 45
NAFTA_SOP_2015, 78
NAFTA_SOP_Attachment, 79
schaefer07_complex_case, 101
synthetic_data_for_UBA_2014, 116
test_data_from_UBA_2014, 119

∗ hplot
mkinerrplot, 55

∗ manip
ilr, 34
mkin_wide_to_long, 72
mkinerrmin, 54

∗ optimize
mmkin, 73

∗ parent solutions
DFOP.solution, 15
FOMC.solution, 27
HS.solution, 31
IORE.solution, 36
logistic.solution, 39
SFO.solution, 104
SFORB.solution, 105

[.mhmkin, 48
[.mhmkin (mhmkin), 47
[.mmkin, 74, 93, 123

add_err, 4
AIC, 60
AIC.mmkin, 6, 42
anova.saem.mmkin, 7

array, 48, 73
aw, 8

backtransform_odeparms
(transform_odeparms), 120

best (multistart), 75
BIC.mmkin (AIC.mmkin), 6
boxplot, 87

CAKE_export, 9
check_failed, 10
confint.mkinfit, 10
create_deg_func, 13

D24_2014, 14
deSolve::lsoda(), 59
deSolve::ode(), 58–60
DFOP.solution, 15, 28, 32, 37, 40, 105, 106
dimethenamid_2018, 16
dnorm, 41
ds_dfop (ds_mixed), 18
ds_dfop_sfo (ds_mixed), 18
ds_fomc (ds_mixed), 18
ds_hs (ds_mixed), 18
ds_mixed, 18
ds_sfo (ds_mixed), 18

endpoints, 18
experimental_data_for_UBA_2019, 20

f_time_norm_focus, 28
FOCUS_2006_A (FOCUS_2006_datasets), 22
FOCUS_2006_B (FOCUS_2006_datasets), 22
FOCUS_2006_C (FOCUS_2006_datasets), 22
FOCUS_2006_D (FOCUS_2006_datasets), 22
FOCUS_2006_datasets, 22
FOCUS_2006_DFOP_ref_A_to_B, 23
FOCUS_2006_E (FOCUS_2006_datasets), 22
FOCUS_2006_F (FOCUS_2006_datasets), 22
FOCUS_2006_FOMC_ref_A_to_F, 24
FOCUS_2006_HS_ref_A_to_F, 25

125

126 INDEX

FOCUS_2006_SFO_ref_A_to_F, 26
focus_soil_moisture, 27, 30
FOMC.solution, 16, 27, 32, 37, 40, 105, 106

get_deg_func, 30
groupedData, 83

hierarchical_kinetics, 30
hist, 37
HS.solution, 16, 28, 31, 37, 40, 105, 106
html_listing (summary_listing), 115

illparms, 32, 110
illparms.mhmkin, 48
ilr, 34, 120, 121
inline::cfunction(), 63
intervals.saem.mmkin, 35
invilr (ilr), 34
IORE.solution, 16, 28, 32, 36, 40, 105, 106

legend, 56, 71, 92
llhist, 37, 76
loftest, 38
logistic.solution, 16, 28, 32, 37, 39, 105,

106
logLik, 41
logLik.mkinfit, 41, 60
logLik.saem.mmkin, 42
lrtest, 60
lrtest.default, 38, 43
lrtest.mkinfit, 43
lrtest.mmkin (lrtest.mkinfit), 43

makeCluster, 48, 73
max_twa_dfop (max_twa_parent), 44
max_twa_fomc (max_twa_parent), 44
max_twa_hs (max_twa_parent), 44
max_twa_parent, 44
max_twa_sfo (max_twa_parent), 44
mccall81_245T, 45
mean_degparms, 46, 88, 89, 99
mhmkin, 34, 47, 48
mixed, 49
mixed.mmkin, 88, 89
mkin_long_to_wide, 71
mkin_wide_to_long, 72
mkinds, 20, 51, 51, 117, 119
mkindsg, 14, 16, 52, 52, 96
mkinerrmin, 54

mkinerrplot, 55, 94
mkinfit, 4, 8, 9, 11, 19, 20, 32, 34, 41, 43, 44,

54, 55, 56, 64–66, 68, 70, 72, 73, 90,
91, 97, 99, 109, 110, 117, 119, 121,
123

mkinfit(), 63
mkinmod, 19, 45, 56–58, 62, 63, 64, 67, 68, 73,

88, 98, 121
mkinparplot, 65
mkinplot, 56, 66, 71
mkinpredict, 4, 67, 68, 88
mkinpredict(), 56, 58
mkinresplot, 70, 94
mkinsub (mkinmod), 62
mkinsub(), 62
mmkin, 4, 6, 8, 32, 34, 42, 43, 48, 50, 60, 73,

73, 77, 80, 93, 97–99, 110, 124
mtext, 94
multistart, 37, 75, 85–87

nafta, 77, 77, 79, 95
NAFTA_SOP_2015, 78
NAFTA_SOP_Appendix_B (NAFTA_SOP_2015),

78
NAFTA_SOP_Appendix_D (NAFTA_SOP_2015),

78
NAFTA_SOP_Attachment, 79
nlme, 112
nlme.mmkin, 19, 79, 83, 88, 111
nlme.mmkin(), 83
nlme::anova.lme(), 81
nlme::coef.lme(), 81
nlme::intervals(), 81
nlme::nlme, 81
nlme::pdDiag, 80
nlme_data (nlme_function), 83
nlme_function, 83
nlme_function(), 81
nobs.mkinfit, 84

ode, 68
ode solver from package deSolve, 58

parallel::detectCores(), 48, 73
parallel::makeCluster, 75
parms, 60, 85
parplot, 76, 86
pkgbuild::has_compiler(), 63
plot, 56, 71, 89, 92

INDEX 127

plot.mixed.mmkin, 81, 87, 100
plot.mkinfit, 55, 60, 66, 70, 90, 94
plot.mmkin, 74, 93, 95
plot.nafta, 95
plot_err (plot.mkinfit), 90
plot_res, 71
plot_res (plot.mkinfit), 90
plot_sep (plot.mkinfit), 90
print.illparms.mhmkin (illparms), 32
print.illparms.mkinfit (illparms), 32
print.illparms.mmkin (illparms), 32
print.illparms.saem.mmkin (illparms), 32
print.mhmkin (mhmkin), 47
print.mixed.mmkin (mixed), 49
print.mkinds (mkinds), 51
print.mkindsg (mkindsg), 52
print.mkinmod (mkinmod), 62
print.mmkin (mmkin), 73
print.multistart (multistart), 75
print.nafta (nafta), 77
print.nlme.mmkin (nlme.mmkin), 79
print.saem.mmkin (saem), 97
print.status.mhmkin (status), 108
print.status.mmkin (status), 108
print.summary.mkinfit

(summary.mkinfit), 109
print.summary.mmkin (summary.mmkin), 110
print.summary.nlme.mmkin

(summary.nlme.mmkin), 111
print.summary.saem.mmkin

(summary.saem.mmkin), 113

read_spreadsheet, 96
render, 31
residuals.mkinfit, 97
rmarkdown::pdf_document, 30

saem, 33, 34, 48, 86, 97
saem.mmkin, 7, 19, 42, 76, 88, 113
saemix::logLik.SaemixObject, 7, 42
saemix::saemix, 99
saemix::saemix(), 97
saemix::SaemixData, 99, 100
saemix::SaemixModel, 99, 100
saemix::saemixModel, 98, 99
saemix::saemixModel(), 99
saemix::SaemixObject, 100, 114
saemix_data (saem), 97
saemix_model (saem), 97

schaefer07_complex_case, 101
schaefer07_complex_results

(schaefer07_complex_case), 101
set_nd_nq, 102
set_nd_nq_focus (set_nd_nq), 102
SFO.solution, 16, 28, 32, 36, 37, 40, 104, 106
SFORB.solution, 16, 28, 32, 37, 40, 105, 105
sigma_twocomp, 106
stats::nlminb(), 56, 58
stats::qlogis(), 121
status, 108
summary.mkinfit, 19, 54, 60, 109
summary.mmkin, 110
summary.nlme.mmkin, 19, 81, 111, 111
summary.saem.mmkin, 19, 100, 113, 114
summary_listing, 115
synthetic_data_for_UBA_2014, 116

test_data_from_UBA_2014, 119
tex_listing (summary_listing), 115
tikz, 92, 94
transform_odeparms, 59, 120

update.mkinfit, 43, 123
update.nlme.mmkin (nlme.mmkin), 79

which.best (multistart), 75

	add_err
	AIC.mmkin
	anova.saem.mmkin
	aw
	CAKE_export
	check_failed
	confint.mkinfit
	create_deg_func
	D24_2014
	DFOP.solution
	dimethenamid_2018
	ds_mixed
	endpoints
	experimental_data_for_UBA_2019
	FOCUS_2006_datasets
	FOCUS_2006_DFOP_ref_A_to_B
	FOCUS_2006_FOMC_ref_A_to_F
	FOCUS_2006_HS_ref_A_to_F
	FOCUS_2006_SFO_ref_A_to_F
	focus_soil_moisture
	FOMC.solution
	f_time_norm_focus
	get_deg_func
	hierarchical_kinetics
	HS.solution
	illparms
	ilr
	intervals.saem.mmkin
	IORE.solution
	llhist
	loftest
	logistic.solution
	logLik.mkinfit
	logLik.saem.mmkin
	lrtest.mkinfit
	max_twa_parent
	mccall81_245T
	mean_degparms
	mhmkin
	mixed
	mkinds
	mkindsg
	mkinerrmin
	mkinerrplot
	mkinfit
	mkinmod
	mkinparplot
	mkinplot
	mkinpredict
	mkinresplot
	mkin_long_to_wide
	mkin_wide_to_long
	mmkin
	multistart
	nafta
	NAFTA_SOP_2015
	NAFTA_SOP_Attachment
	nlme.mmkin
	nlme_function
	nobs.mkinfit
	parms
	parplot
	plot.mixed.mmkin
	plot.mkinfit
	plot.mmkin
	plot.nafta
	read_spreadsheet
	residuals.mkinfit
	saem
	schaefer07_complex_case
	set_nd_nq
	SFO.solution
	SFORB.solution
	sigma_twocomp
	status
	summary.mkinfit
	summary.mmkin
	summary.nlme.mmkin
	summary.saem.mmkin
	summary_listing
	synthetic_data_for_UBA_2014
	test_data_from_UBA_2014
	transform_odeparms
	update.mkinfit
	[.mmkin
	Index

